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Современные геопорталы предоставляют пользователям широкий набор сервисов для работы 
с пространственными данными, однако разнообразие этих инструментов затрудняет выбор подходя-
щего сервиса под конкретную задачу. В связи с этим возникает необходимость внедрения рекоменда-
тельной системы, способной персонализировать подбор сервисов для пользователей. Целью настояще-
го исследования является разработка и сравнительная оценка алгоритмов рекомендательной системы 
для построения научных процессов обработки пространственных данных геопортала на основе методов 
совместной фильтрации. В работе использованы реальные данные о взаимодействиях пользователей 
с сервисами, на основе которых сформирована разреженная матрица «пользователь – сервис». Оценка 
эффективности алгоритмов производилась с использованием общепринятых метрик точности, полноты 
и качества ранжирования. В рамках исследования реализованы и проанализированы 14 алгоритмов ре-
комендаций различных классов: от простых неперсонализированных до гибридных и нейросетевых мо-
делей. Выявлено, что наилучшие результаты демонстрируют гибридные методы, в частности алгоритм, 
объединяющий подходы на основе сходства пользователей и объектов и оптимизирующий качество ран-
жирования. Разработанная система рекомендаций повышает релевантность предложений для пользова-
телей и может служить эффективным инструментом поддержки научной деятельности на геопортале 
за счет персонализированного подбора сервисов.
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Modern geoportals offer users a wide range of services for working with spatial data; however, the diversity 
of available tools complicates the selection of an appropriate service for a specific task. This creates the need for 
a recommender system capable of personalizing the service selection process. The aim of this study is to develop 
and comparatively evaluate algorithms for a recommender system that supports scientific workflows for spatial data 
processing on a geoportal, using collaborative filtering methods. The study is based on real user–service interaction 
data, from which a sparse user–service matrix was constructed. The effectiveness of the algorithms was assessed 
using standard metrics of precision, recall, and ranking quality. Fourteen recommendation algorithms of various 
types were implemented and analyzed, ranging from simple non-personalized models to hybrid and neural network 
approaches. The results indicate that hybrid methods perform best, particularly the algorithm combining user- and 
item-based approaches with ranking optimization. The developed recommender system improves the relevance of 
service suggestions for users and can serve as an effective tool for supporting scientific activities on the geoportal by 
enabling personalized service selection.
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Введение 
Геопорталы представляют собой ком-

плексные информационные системы, 
предоставляющие пользователям доступ 
к различным сервисам для работы с про-
странственными данными. На геопорта-
ле Института динамики систем и теории 
управления Сибирского отделения Россий-
ской академии наук (ИДСТУ СО РАН) раз-
работан широкий набор веб-сервисов [1], 
позволяющих выполнять поиск, визуализа-
цию и анализ разнообразных данных. Такое 

многообразие доступных инструментов, 
с одной стороны, расширяет возможности 
пользователя, но с другой – усложняет на-
вигацию и выбор нужного сервиса под кон-
кретную задачу. Возникает необходимость 
внедрения механизма персонализации, ко-
торый облегчал бы пользователям поиск ре-
левантных сервисов. 

Основными пользователями данного 
геопортала являются научные сотрудники, 
применяющие предоставляемые сервисы 
как по отдельности, так и последовательно 
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(в виде научных процессов, цепочек вызо-
вов сервисов) для решения прикладных ис-
следовательских задач. На практике было 
отмечено, что обилие доступных сервисов 
затрудняет быстрый выбор подходяще-
го инструмента, особенно новых (ранее 
не использованных) сервисов. В этих ус-
ловиях актуальной задачей становится раз-
работка рекомендательной системы, спо-
собной автоматически предлагать каждому 
пользователю наиболее подходящие серви-
сы на основе анализа истории взаимодей-
ствий (поведения) и предпочтений без не-
обходимости формулирования поискового 
запроса [2].

Современные рекомендательные си-
стемы строятся на различных методах ана-
лиза данных. Наиболее распространены 
подходы на основе контента, знаний, ста-
тистики, правил, а также совместной (кол-
лаборативной) фильтрации (Collaborative 
Filtering, CF). Методы на основе знаний 
и статистики можно назвать базовыми, так 
как они не учитывают скрытых закономер-
ностей (предпочтений) о поведении поль-
зователя на геопортале. Методы на осно-
ве контента и метаинформации требуют 
глубокого погружения в систему понятий 
геопортала, логику работы самого сервиса 
для описания, требуют дополнительных 
затрат ресурсов на валидацию описаний 
[3, 4]. Методы пользовательской CF исполь-
зуют информацию о поведении пользовате-
лей на портале (прошлых взаимодействиях 
с объектами, например оценки сервисов 
или факты использования) для выявления 
скрытых закономерностей и формирования 
персональных рекомендаций [5, 6].

Преимущество совместной фильтрации 
состоит в том, что она не требует явного 
описания содержимого сервисов, а опи-
рается на сходство между пользователями 
или объектами, выявленное из имеющих-
ся данных о предпочтениях [6]. Например, 
если два пользователя использовали много 
одинаковых сервисов, то сервис, который 
впервые вызван первым пользователем 
и еще не был вызван вторым, может быть 
рекомендован второму – исходя из предпо-
ложения, что у пользователей со схожими 
интересами будут совпадать и другие пред-
почтения [7].

Учитывая перечисленные преимуще-
ства, в качестве основы для рекомендатель-
ной системы выбран подход совместной 
фильтрации. В более ранней работе [8] был 
представлен прототип рекомендательной 
системы для геопортала ИДСТУ СО РАН 
на базе метода ближайших соседей. Это 
решение продемонстрировало принципи-
альную возможность улучшения процесса 

поиска сервисов за счет персонализации 
с помощью коллаборативной фильтрации. 

Формально задача рекомендации сер-
висов может быть сведена к ранжированию 
множества сервисов S для каждого пользо-
вателя u ∈ U согласно некоторой функции 
релевантности, при этом |S| = m, |U| = n. 
Цель  – построить функцию представлен-
ную в формуле

 r : U×S→[0,1],
которая для пары «пользователь  – сервис» 
возвращает степень релевантности сервиса 
данному пользователю (0 означает полное 
несоответствие потребностям, 1  – макси-
мальную релевантность).

Цель исследования – разработка и экс-
периментальная оценка системы рекомен-
даций веб-сервисов обработки простран-
ственных данных для распространения 
информации (рекомендации тех сервисов, 
что пользователь еще не использовал, но ис-
пользовали другие пользователи со схожим 
научным интересом) на геопортале. 

Материалы и методы исследования
Данные и подготовка. На геопортале 

организован сбор статистики использова-
ния сервисов: регистрируется каждое обра-
щение пользователя к сервису (с указанием 
времени, идентификаторов и пр.). Эти дан-
ные о поведении пользователей трансфор-
мируются в матрицу «пользователь  – сер-
вис» Q, где элементом qij служит нормиро-
ванное количество вызовов cij сервиса sj 
пользователем ui. Таким образом каждый 
пользователь ui описывается вектором   
qi = {qi1, …, qim }. Полученная матрица взаи-
модействий является разреженной, по-
скольку каждый конкретный пользователь 
использует лишь небольшой поднабор из мно-
жества доступных сервисов. Таким обра-
зом, на основе накопленных логов исполь-
зования формируется датасет, служащий 
исходной информацией для алгоритмов 
коллаборативной фильтрации.

В выборке присутствуют взаимодей-
ствия 19 (n) пользователей с 199 (m) раз-
личными сервисами (всего зафиксировано 
11 055 событий обращения к сервисам). 
Данные были разбиты на обучающую и те-
стовую части в соотношении 70/30. При раз-
делении использовался временной прин-
цип: отсортированные по времени взаимо-
действия первых 70 % составили обучаю-
щую выборку, а последние 30 % – тестовую. 

Обучающая выборка позволила алго-
ритмам зафиксировать существующие за-
кономерности в поведении пользователей 
и сформировать прогнозные модели пред-
почтений, тогда как тестовая часть имити-
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ровала появление новых взаимодействий, 
ранее неизвестных системе. Для каждого 
пользователя на основе обученной модели 
формировался список наиболее вероятных 
к использованию сервисов, с которыми 
он ранее не взаимодействовал. Сформи-
рованный список рекомендаций отражает 
предполагаемые будущие интересы и слу-
жит инструментом персонализированного 
выбора. Сравнение предсказанных реко-
мендаций с реальными обращениями поль-
зователей из тестовой выборки дало воз-
можность объективно оценить, насколько 
корректно каждая модель предсказывает 
будущее поведение и обеспечивает персо-
нализированный выбор сервисов.

Метрики оценки. Для оценки рекомен-
даций использовались следующие метри-
ки (вычислялись по топ-k рекомендациям  
для k = 5,10,15, затем усреднялись).

Точность (Precision@k): доля реко-
мендованных элементов из топ-k, кото-
рые оказались релевантными (то есть дей-
ствительно использованы пользователем). 
Высокое значение Precision@k означает, 
что среди рекомендаций мало нерелевант-
ных элементов.

Полнота (Recall@k): доля релевантных 
элементов, которые были найдены среди 
топ-k рекомендаций. Высокое значение 
Recall@k означает, что рекомендацион-
ная модель покрывает значительную часть 
предпочтений пользователя.

Полезность (NDCG@k): Нормализо-
ванный кумулятивный прирост полезности 
(Normalized Discounted Cumulative Gain)  – 
нормализованный дисконтированный ку-
мулятивный выигрыш, учитывающий по-
зицию релевантных элементов в списке ре-
комендаций. Высокий NDCG@k означает, 
что релевантные элементы находятся ближе 
к началу списка (больший вес у верхних по-
зиций). Значение NDCG нормируется в диа-
пазон [0, 1].

Алгоритмы рекомендации. Всего в  
рамках исследования реализовано и про-
тестировано 14 алгоритмов рекомендаций – 
от простых базовых до современных ги-
бридных нейронных моделей. Перечислен-
ные алгоритмы можно сгруппировать по ка-
тегориям следующим образом:

−  Базовые подходы: Popular (рекомен-
дует самые популярные в системе сер-
висы по общей частоте использования) 
и Random (случайное ранжирование серви-
сов для каждого пользователя). Эти непер-
сонализированные стратегии служат ориен-
тирами: модель Popular отражает максимум 
возможной полноты (Recall) при минималь-
ной персонализации, а Random показывает 
нижнюю границу качества («без модели»).

−  Memory-based совместная фильтра-
ция: алгоритм на основе k ближайших со-
седей (user-based KNN) [6, 9]. Для каждого 
пользователя находятся несколько наиболее 
похожих по истории предпочтений пользо-
вателей, и ему рекомендуются сервисы, ко-
торые уже используются этими «соседями» 
[10]. В реализации использовался k = 4, ме-
трика сходства – евклидово расстояние.

−  Матричная факторизация: модели 
SVD, PCA, ALS, WRMF и NMF. Эти ме-
тоды разлагают матрицу взаимодействий 
на матрицы меньшей размерности, выявляя 
скрытые (латентные) факторы пользовате-
лей и сервисов. Каждый пользователь и сер-
вис представляются вектором в простран-
стве этих факторов, а степень интереса 
определяется, например, скалярным произ-
ведением соответствующих векторов. Клас-
сические методы SVD (сингулярное разло-
жение матрицы) и ALS (чередующиеся наи-
меньшие квадраты) оценивают латентные 
характеристики, оптимизируя приближение 
исходной матрицы рейтингов [4, 11]. Метод 
NMF (неотрицательное матричное разложе-
ние) накладывает неотрицательные ограни-
чения на факторы, облегчая интерпретацию. 
Вариант WRMF (Weighted Regularized MF) 
модифицирует ALS для неявной обратной 
связи, вводя веса уверенности в наблюдае-
мых взаимодействиях [12, 13]. В целом мо-
дельно-ориентированные методы требуют 
значительных вычислений для обучения, 
но обеспечивают быстрое прогнозирование 
рейтингов после обучения.

−  Нейросетевая модель: NCF (Neu-
ral Collaborative Filtering). Этот подход 
использует многослойный перцептрон 
для моделирования взаимодействий между 
пользователями и сервисами. Пользовате-
лям и сервисам сопоставляются обучае-
мые эмбеддинги (векторы признаков), ко-
торые объединяются и подаются на вход 
нейронной сети, предсказывающей вероят-
ность взаимодействия [14]. Обучение NCF 
проводится на неявных данных (факт ис-
пользования сервисов) с негативным сем-
плированием и функцией потерь в виде 
бинарной кроссэнтропии. Нелинейная мо-
дель NCF теоретически способна выразить 
сложные зависимости предпочтений, вы-
ходя за рамки линейной гипотезы матрич-
ной факторизации.

−  Глубокая гибридная модель: DeepFM 
(Deep Factorization Machine). Этот алгоритм 
сочетает факторизационную модель с глу-
боким нейронным подходом. Архитектура 
включает два компонента: FM-часть, ко-
торая эффективно моделирует парные вза-
имодействия признаков (аналогично MF 
для идентификаторов пользователей и сер-
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висов), и глубокую часть (MLP), выявляю-
щую нелинейные взаимосвязи более высо-
кого порядка. DeepFM способен учитывать 
разнообразные признаки пользователей 
и объектов (в данном исследовании явно до-
полнительные признаки не использовались, 
модель работала только с ID), объединяя 
преимущества факторизации и глубокого 
обучения [15].

−  Гибридные методы CF: LightFM 
и PHCF. Модель LightFM [16] реализует 
коллаборативный подход, расширяемый 
содержательными признаками, и оптими-
зируется по специальной ранжирующей 
функции потерь (в данной статье использо-
валась WARP – Weighted Approximate-Rank 
Pairwise). PHCF (Personalized Hybrid CF) – 
персонализированный гибридный подход, 
комбинирующий предсказания user-based 
и item-based стратегий [17]. Для каждого 
пользователя агрегируются оценки, по-
лученные на основе схожести с другими 
пользователями и на основе сходства сер-
висов с уже понравившимися ему. В реали-
зованном алгоритме PHCF-BPR обучение 
латентных факторов выполнено через оп-
тимизацию функции потерь BPR (Bayesian 
Personalized Ranking) [18], направлен-
ной на улучшение качества ранжирова-
ния рекомендаций.

−  Комбинированные ансамбли: методы 
KNN+LightFM-WARP и KNN+PHCF-BPR 
объединяют подходы на основе памяти 
и модели. Окончательный рейтинг рассчи-
тывается как взвешенная сумма скорингов, 
полученных от KNN и соответствующей 

модельно-ориентированной алгоритми-
ческой части (LightFM или PHCF). Такая 
комбинация позволяет учесть одновремен-
но «мнение» похожих пользователей и гло-
бальные паттерны предпочтений, получен-
ные моделью, с целью повысить общую 
точность рекомендаций.

Результаты исследования  
и их обсуждение

Эксперименты проведены на реаль-
ных данных использования геопортала, 
позволяющих объективно сравнить каче-
ство рекомендаций перечисленных алго-
ритмов. На основе тестовой выборки вы-
числены средние значения Precision@10, 
Recall@10 и nDCG@10 для каждой модели 
(таблица), а также сводный суммарный по-
казатель качества (итоговый скор), рассчи-
тываемый как взвешенная сумма метрик 
с наибольшим весом у nDCG. Общий скор 
отражает интегральную эффективность ал-
горитма, делая основной упор на качество 
ранжирования рекомендаций.

Итоговый скор складывается по фор-
муле 0.3∙Precision + 0.3∙Recall + 0.4∙NDCG, 
отражая больший акцент на качестве ран-
жирования. Фактически NDCG получил 
наибольший вес, что соответствует ключе-
вой роли порядка рекомендаций. Корреля-
ционный анализ метрик показывает силь-
ную связь между Recall и NDCG (r = 0,894) 
и умеренную – между Precision и NDCG (r = 
0,798). Это означает, что модели с высоким 
NDCG обычно находят больше релевант-
ных элементов (больший Recall).

Результаты сравнения алгоритмов рекомендательных систем

Алгоритм Precision Recall NDCG Общий скор

PHCF-BPR 0,080 0,093 0,203 0,133 
KNN+PHCF-BPR 0,081 0,080 0,202 0,129 
LightFM-WARP 0,055 0,079 0,172 0,109 
NCF 0,054 0,059 0,163 0,099 
KNN 0,047 0,074 0,148 0,096 
KNN+LightFM-WARP 0,046 0,070 0,126 0,085 
Popular 0,066 0,038 0,114 0,077 
WRMF 0,058 0,018 0,102 0,064 
ALS 0,027 0,018 0,081 0,046 
NMF 0,026 0,030 0,059 0,040 
PCA 0,028 0,017 0,063 0,039 
DeepFM 0,035 0,009 0,049 0,033 
SVD 0,022 0,010 0,042 0,026 
Random 0,029 0,006 0,036 0,025 

Примечание: составлена авторами на основе полученных данных в ходе исследования.
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Сравнение 14 алгоритмов по метрикам качества рекомендаций:  
Precision, Recall и NDCG (усредненные значения) 

Примечание: составлен авторами по результатам данного исследования

Модель PHCF‑BPR обеспечила наивыс-
ший суммарный скор (0,1331) за счет сба-
лансированных значений Precision (0,0801), 
Recall (0,0929) и особенно высокого NDCG 
(0,2031). Гибрид KNN+PHCF‑BPR за-
нял второе место (0,1293) с наилучшим 
значением Precision (0,0813) и почти та-
ким же высоким NDCG (0,2021). Третью 
позицию занял LightFM‑WARP (общий 
скор 0,1089). Напротив, классические ме-
тоды и нейросетевые модели показали су-
щественно более низкие результаты: так, 
NCF набрал суммарный скор 0,0990, усту-
пив LightFM‑методам и находясь на уровне 
простого KNN (0,0957), а DeepFM с общим 
скором 0,0327 продемонстрировал ми-
нимальную эффективность. Базовый ме-
тод Popular показал умеренную точность 
(Precision 0,0661) при очень низкой полноте 
(Recall 0,0380), что указывает на то, что ча-
стые сервисы хорошо работают на Precision, 
но не покрывают все релевантные объекты. 
Случайная стратегия (Random) дала худ-
шие результаты по всем метрикам, что под-
тверждает обоснованность использования 
более сложных методов. 

Модель PHCF‑BPR выигрывает за счет 
оптимизации ранжирования: ее функция 
потерь BPR прямо нацелена на повышение 
ранговой метрики. В итоге лучшие модели 
демонстрируют одновременно высокие зна-
чения всех трех показателей, тогда как у ба-

зовых подходов (например, Popular и KNN) 
или нейросетевых методов обычно наблю-
дается перекос в одну из метрик в условиях 
малого объема данных.

На рисунке представлено сравнение 
ключевых метрик (Precision, Recall, NDCG) 
для всех алгоритмов. Видно, что методы 
семейства PHCF опережают остальные 
подходы по всем показателям, особен-
но по Precision и NDCG. Нейронные сети 
(NCF) демонстрируют хорошие показатели 
NDCG, но несколько уступают в Precision. 
KNN и Popular достигают высоких значений 
Recall и Precision соответственно, что де-
лает их полезными в определенных сцена-
риях. Модели матричной факторизации 
(SVD, PCA, NMF, ALS, WRMF) расположе-
ны в нижней части графиков, существенно 
уступая более современным методам.

Выявлено явное превосходство гибрид-
ных подходов на основе BPR-оптимизации. 
PHCF-модели эффективно объединяют кол-
лаборативную и содержательную состав-
ляющие (в данной работе содержательные 
признаки не использовались явно, но сама 
модель имеет регуляризующий эффект 
и оптимизирует ранжирование). Алгоритм 
PHCF-BPR достигает высокого NDCG 
за счет прямой оптимизации этой метрики 
в функции потерь. Гибрид KNN+PHCF-
BPR дает наилучший Precision, поскольку 
учитывает как близость пользователей, так 
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и глобальные паттерны, что улучшает точ-
ность рекомендаций. Нейронные сети (NCF, 
DeepFM) при столь малом объеме данных 
(19 пользователей) не смогли полностью 
реализовать свой потенциал  – им, вероят-
но, требуется больше данных для обучения 
большого числа параметров. Тем не менее 
NCF показала себя достойно, что подтверж-
дает эффективность даже относительно 
простых MLP-архитектур для коллабора-
тивной фильтрации [19]. 

Выводы
Для рекомендательной системы геопор-

тала были разработаны и протестированы 
рекомендательные модели для подбора но-
вых (ранее не используемых данным поль-
зователем) сервисов на основе методов кол-
лаборативной фильтрации. Был проведен 
эксперимент, определены самые эффектив-
ные гиперпараметры для каждой модели, 
внедрен наиболее эффективный алгоритм 
рекомендации PHCF-BPR.

Разработанная рекомендательная систе-
ма решает проблему поиска сервисов и рас-
пространения информации об их использо-
вании среди специалистов одной предмет-
ной области и способна рекомендовать сер-
висы, которые пользуются популярностью, 
с учетом области интересов.

Проведенное сравнительное исследо-
вание алгоритмов показало, что подходы 
на основе PHCF с функцией потерь BPR 
демонстрируют наилучшие результаты 
по ключевым метрикам рекомендаций, 
модель значительно превосходит класси-
ческие методы по точности благодаря оп-
тимизации ранжирования, а ее гибридиза-
ция с KNN позволяет дополнительно по-
высить полноту и качество ранжирования 
рекомендаций. Нейронные методы (NCF, 
DeepFM) при небольшом объеме данных 
не достигли лидирующих позиций, однако 
NCF заняла достойное место, подтвердив 
жизнеспособность нейросетевого подхо-
да. Простые алгоритмы (например, KNN, 
Popular) остаются конкурентоспособными 
на разреженных данных, обеспечивая от-
носительно высокие показатели для своих 
классов сложности.

Основные выводы исследования:
1. Алгоритмы PHCF (BPR) превосходят 

классические методы – за счет прямой оп-
тимизации ранжирования они достигают 
более высокой точности рекомендаций.

2.  Гибридные подходы эффективны 
для максимизации качества  – комбинация 
моделей (например, KNN+PHCF-BPR) по-
зволяет улучшить одновременно Precision, 
Recall и NDCG за счет учета разных аспек-
тов предпочтений.

3. Нейросетевые модели требуют боль-
ше данных  – на ограниченном датасе-
те их потенциал не раскрыт полностью, 
однако они способны показывать хоро-
шие результаты при достаточном объеме 
взаимодействий. 

4.  Простые методы остаются полезны-
ми – в условиях дефицита данных или для  
быстрого прототипирования модели вроде 
Popular и KNN дают приемлемое качество 
при минимальной сложности.

Полученные результаты вносят вклад 
в понимание практической применимости 
различных подходов к построению рекомен-
дательных систем и предоставляют научно 
обоснованные рекомендации для выбора 
алгоритмов в зависимости от специфики 
задачи и доступных ресурсов. В частности, 
для промышленного внедрения на рассма-
триваемом геопортале можно рекомендо-
вать использовать комбинацию лучших 
моделей (PHCF-BPR в качестве основной, 
гибридный KNN+PHCF-BPR для усиле-
ния ранжирования, а также добавить NCF 
и KNN в ансамбль для учета разных аспек-
тов). Для быстрых прототипов достаточ-
но ограничиться простыми алгоритма-
ми Popular и KNN, дополнив их моделью 
PHCF-BPR для повышения точности. В ис-
следовательских целях перспективно вклю-
чать в рассмотрение более сложные модели 
(DeepFM) и их модификации, поскольку 
на больших объемах данных или с добавле-
нием контентных признаков они могут по-
казать себя лучше.

Таким образом, реализованная рекомен-
дательная система показала свою эффектив-
ность для поддержки пользователей геопор-
тала ИДСТУ СО РАН, а проведенный ана-
лиз алгоритмов предоставляет базу для ее 
дальнейшего совершенствования.
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