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До сих пор дублирование является важным методом повышения эффективности технических систем 
различного назначения, а в некоторых областях – критически необходимым. Разработка математических мо-
делей систем, обладающих сложной структурой, стохастическим характером функционирования и неполной 
наблюдаемостью внутренних состояний, является важной задачей. В связи с этим целью данного исследова-
ния является разработка скрытой марковской модели дублированной системы с горячим резервом и одним 
восстанавливающим устройством на основе ее укрупненной полумарковской модели для анализа динамики 
и прогнозирования состояний. Для достижения поставленной цели использовались методы математического 
моделирования, теории полумарковских процессов и скрытых марковских моделей. Построена полумарков-
ская модель дублированной системы с горячим резервом и одним восстанавливающим устройством в пред-
положении, что времена восстановления компонентов распределены экспоненциально, а времена безотказной 
работы имеют функции распределения общего вида. Найдено стационарное распределение вложенной цепи 
Маркова в явном виде, что позволило построить укрупненную модель, используя алгоритм стационарного фа-
зового укрупнения. В статье разработана новая скрытая марковская модель дублированной системы на основе 
ее укрупненной полумарковской модели. Она позволяет идентифицировать отказавшие компоненты системы 
(по получаемой в процессе функционирования информации), прогнозировать последующие состояния, уточ-
нять матрицу переходных вероятностей, определять наиболее вероятные последовательности состояний и др. 
С помощью иллюстративного примера показаны возможности разработанной модели. 

Ключевые слова: дублированная система, полумарковская модель, горячий резерв, ограниченное восстановление, 
алгоритм стационарного фазового укрупнения, скрытая марковская модель, анализ динамики
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Redundancy remains an important method for increasing the efficiency of technical systems for various purposes, 
and in some areas, it is critically necessary. Developing mathematical models of systems with complex structures, 
stochastic operation, and incomplete observability of internal states is a crucial task. Therefore, the aim of this study is 
to develop a hidden Markov model of a redundant hot standby system with a single recovery device based on its merged 
semi-Markov model for analyzing its dynamics and predicting its states. To achieve this goal, we used mathematical 
modeling, semi-Markov process theory, and hidden Markov modeling methods. We have constructed a semi-Markov 
model for a redundant system with hot standby and a single repair device under the assumption that the time-to-failure 
of system components follows random variables with distribution functions in general form, while the repair times are 
exponentially distributed. We have found the stationary distribution of the embedded Markov chain in explicit form, 
which made it possible to construct a merged model by using the stationary phase merging algorithm. This article 
proposes a new hidden Markov model based on its merged semi-Markov model. It allows for the identification of failed 
system components (based on information obtained during operation), prediction of subsequent states, refinement of 
the transition probability matrix, determination of the most probable sequences of states, etc. The capabilities of the 
developed model are demonstrated using an illustrative example.
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Введение
Высокая надежность технических си-

стем различного назначения достигается 
за счет использования резервирования. 
Дублированная система (ДС) представ-
ляет собой систему, состоящую из двух 
параллельно соединенных компонентов, 
выполняющих общую функцию, в кото-

рой один из компонентов выступает в ка-
честве резерва [1, с. 58]. Под горячим ре-
зервом понимается нагруженный резерв, 
то есть что резервный компонент тоже на-
ходится в режиме работы. В этом случае 
система находится в рабочем состоянии 
до тех пор, пока хотя бы один ее компо-
нент работоспособен.
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На протяжении последних 60 лет для мо-
делирования и анализа ДС исследователя-
ми использовались различные случайные 
процессы. ДС являются основой теории 
надежности и могут быть найдены во мно-
гих практических приложениях, например 
в компьютерных системах в промышлен-
ности и военном деле, на электростанциях 
и распределительных устройствах, а также 
в системах электронных телефонных стан-
ций [2]. Обзор основных научных резуль-
татов, посвященных ДС, за период с 1960  
по 2000 г. можно найти в [2]. В.В. Рыков 
и соавт. использовали разложимые полу-
регенеративные процессы с конечным мно-
жеством состояний, ограничиваясь случаем 
идентичных компонентов, для анализа на-
дежности ДС с холодным резервом и одним 
восстанавливающим устройством [3]. Р. Мал-
хотра и соавт., используя полумарковский 
процесс и методы регенерации, провели 
оценку и сравнение показателей надежно-
сти и эффективности двухкомпонентной си-
стемы холодного резерва и горячего резерва 
с одним восстанавливающим устройством 
[4]. Н. Кумар и соавт. получили характе-
ристики надежности системы холодного 
резерва, состоящей из двух неидентичных 
компонентов с одним восстанавливающим 
устройством, в предположении, что рас-
пределения интенсивности отказов компо-
нентов имеют отрицательную экспоненци-
альную зависимость, в то время как для ин-
тенсивностей восстановления приняты про-
извольные распределения. Для этого ими 
использовался полумарковский процесс 
и методы регенерации для исследования ве-
роятностного поведения системы в различ-
ных возможных переходных состояниях [5]. 
Ю.Е. Обжерин и С.М. Сидоров разработали 
полумарковскую модель с дискретно-непре-
рывным фазовым пространством состояний 
дублированной системы с нагруженным ре-
зервом и ограниченным восстановлением. 
Это позволило получить результаты в более 
общем виде: в предположении, что времена 
безотказной работы и восстановления всех 
элементов системы имеют распределение 
общего вида [6].

Наличие у полумарковского процесса 
вложенной цепи Маркова (ВЦМ) позволя-
ет построить на ее основе скрытую марков-
скую модель (СММ). Если предположить, 
что состояния системы (состояния ВЦМ) 
рассматриваются как ненаблюдаемые, то  
это приводит к задачам определения наи-
более вероятной последовательности пере-
ходов состояний, прогнозированию буду-
щих состояний на основе наблюдаемых 
сигналов, полученных в процессе работы 
системы и др. [7]. 

Несмотря на большую популярность 
использования СММ в различных реаль-
ных прикладных задачах, их применение 
в задачах надежности относительно неве-
лико [8]. Однако в последние годы интерес 
исследователей к данной области растет. 
Для решения задач теории СММ примени-
тельно к моделям надежности технических 
систем, можно использовать метод постро-
ения СММ на основе укрупненного полу-
марковского процесса (ПМП) с дискрет-
но-непрерывным фазовым пространством 
состояний [9; 10]. Он позволяет применять 
аппарат теории СММ к полумарковским 
моделям систем. Скрытая модель может 
предоставить ключевую информацию 
о состоянии системы, такую как отказавший 
компонент системы, надежность системы 
и связанные с этим показатели. Она также 
позволяет решать задачи оценки матрицы 
переходных вероятностей дискретной цепи 
Маркова и матрицы связи с сигналами [11]. 

Цель исследования  – разработка скры-
той марковской модели дублированной систе-
мы с горячим резервом и одним восстанав-
ливающим устройством на основе ее укруп-
ненной полумарковской модели для анализа 
динамики и прогнозирования состояний.

Материалы и методы исследования
Для решения задачи использовались ме-

тоды математического моделирования, тео-
рии ПМП и СММ. Для разработки полумар-
ковской модели ДС использовалась теория 
ПМП с дискретно-непрерывным фазовым 
пространством состояний (ФПС) [12, с. 44–
53; 13, с. 5–7]. Сначала в работе построена 
полумарковская модель рассматриваемой 
системы, предполагая, что времена восста-
новления компонентов распределены экспо-
ненциально, а времена безотказной работы 
заданы распределениями общего вида. Затем 
осуществляется переход к укрупненной 
полумарковской модели, применяя алго-
ритм стационарного фазового укрупнения 
[12, с. 74–79]. Это позволило перейти от дис-
кретно-непрерывного пространства состо-
яний полумарковской модели к дискретно-
му и использовать аппарат теории СММ 
для анализа динамики укрупненной систе-
мы. Затем разрабатывается СММ рассма-
триваемой укрупненной системы, решаются 
основные задачи теории СММ. 

Представленные в статье расчеты про-
ведены при помощи разработанной автором 
программы ЭВМ [14] на языке Python. 

Результаты исследования  
и их обсуждение

Описание системы. Система S состо-
ит из двух различных компонентов K1 и K2. 
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При построении полумарковской модели бу-
дем учитывать следующие предположения:

− В момент начала работы S оба компо-
нента новые и начинают работать. 

−  Времена безотказной работы компо-
нентов описываются случайными величи-
нами (СВ) α1 и α2 с функциями распределе-
ния (ФР) ( ) ( )1 1F t P tα= ≤ , ( ) ( )2 2F t P tα= ≤  
и плотностями распределения f1(t), f2(t), 
а времена восстановления элементов – СВ 
β, имеющей ФР ( ) ( )G t P tβ= ≤  и плот-
ность распределения g(t). 

−  Компонент K2 находится в горячем 
резерве. 

−  Имеется только одно восстанавлива-
ющее устройство. После окончания восста-
новления компонент мгновенно начинает 
работать и считается «как новый».

− Отказ ДС наступает тогда, когда в от-
казе находятся оба компонента, и продол-
жается до восстановления одного из них. 

−  СВ α1, α2, β предполагаются 
независимыми, 

( )i iM xf x dxα
+∞

−∞

= < ∞∫ , 

( )M xg x dxβ
+∞

−∞

= < ∞∫ .

Построение полумарковской модели.  
Опишем функционирование системы S 
ПМП  ξ(t) с дискретно-непрерывным ФПС 
[6]. Вводится следующее множество E по-
лумарковских состояний:

	 { }1, 101 , 210 , 111 , 211 ,  120 , 202 , 110, 201 ,E x x x x x x= 	 (1)
где используется следующая смысловая кодировка: 

− 1 определяет начальное состояние: оба компонента начинают работать;
− состояния idx  представляют собой набор: i – указывает номер компонента, измене-

ние состояния которого привело к изменению состояния системы S; компоненты вектора 
1 2( , )d d d=  определяют физические состояния компонентов системы, учитывая что 

1,  к-й компонент работоспособен,
0,  к-й компонент восстанавливается,
2,  к-й компонент ожидает восстановления,

кd

= 

  

[ )0;x ∈ +∞ −  определяет время до следующей смены состояния в элементе с номером от-
личным от i.

Например, состояние 202x означает, что изменение состояния произошло с K2: K1 вос-
станавливается восстановление (d1 = 0), K2 отказал и перешел в режим ожидания восста-
новления (d2 = 2), до момента восстановления K1 осталось время x ≥ 0. 

На рис. 1 представлено функционирование системы S во времени. Периоды ожидания 
компонентом восстанавливающего устройства отмечены жирной линией.

Рис. 1. Функционирование системы S во времени 
Примечание: составлен автором в ходе исследования
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Опишем ПМП ξ(t) через соответствующий ему процесс марковского восстановления 
(ПМВ) [12, с. 12]. Для этого нужно определить вероятности переходов ВЦМ и распределе-
ние времен пребывания на ее переходах.

Приведем вероятности переходов ВЦМ.

	

( ) ( )

( ) ( )
( ) ( )
( )

101 210
1 2 1 1 1 2

0 0
202 120 111 211
101 210 101 210

210 101 201
111 1 111 1 120

101
211 2

( ) , 0;    ( ) , 0;

, 0;    , 0 ;

, 0;    , 0 ;     1;

, 0;

y y

y y y y
x x x x

y y
x x x

y
x

p f y t f t dt y p f y t f t dt y

p p g x y y p p g x y y x

p f x y y p f x y y x p

p f x y y

∞ ∞

= + > = + >

= = + > = = − < <

= + > = − < < =

= + >

∫ ∫

( )

( ) ( )

( ) ( )

210 110
211 2 202

120 211
110 1 110 1

0 0

202 111
201 2 201 2

0 0

   , 0 ;    1;

( ) , 0;    ( ) , 0;

( ) , 0;   ( ) , 0.

y
x x

y y

y y

p f x y y x p

p g y t f t dt y p f y t g t dt y

p g y t f t dt y p f y t g t dt y

∞ ∞

∞ ∞

= − < < =

= + > = + >

= + > = + >

∫ ∫

∫ ∫

	 (2)

Времена пребывания в состояниях системы несложно определить по рис. 2, например: 
101 110 210
1 1 202 211,  ,   , .y y

x xx x y x yθ α θ θ= = = − >

Таким образом, задан ПМВ { }, ; 0n n nξ θ ≥ , а следовательно, и соответствующий ему 
ПМП ξ(t), описывающий функционирование системы S.

Рассмотрим частный случай рассматриваемой системы, когда времена восстановления 
элементов имеют экспоненциальное распределение, то есть ( ) .tg t e µµ −=  

Составим систему интегральных уравнений для нахождения стационарного распреде-
ления, используя (1) и (2), в предположении существования стационарных плотностей:

	

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

1 2
0

2 1
0

2 1
0

1 2

110 202 ,

201 120 ,

101 111 ( ) 211 ( ) ,

210 211 ( ) 111 ( ) ,

111 101 ( ) 201 ( ) ( ) ,

211 210 ( ) 110 ( ) ( )

x

x

x

x

x dx

x dx

x y f y x dy y f x y dy

x y f y x dy y f x y dy

x y g y x dy f x t g t dt

x y g y x dy f x t g t

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

∞

∞

∞ ∞

∞ ∞

∞ ∞

∞

=

=

= − + +

= − + +

= − + +

= − + +

∫

∫

∫ ∫

∫ ∫

∫ ∫

∫

( ) ( ) ( )

( ) ( ) ( )

0

1
0 0

2
0 0

,

120 110 ( ) ( ) 210 ( ) ,

202 201 ( ) ( ) 101 ( ) ,

 . .

dt

x g x t f t dt y g x y dy

x g x t f t dt y g x y dy

усл нормировки

ρ ρ ρ

ρ ρ ρ

∞

∞ ∞

∞ ∞





















 = + + +



= + + +

+



∫

∫ ∫

∫ ∫  

	 (3)

Для стационарного распределения ВЦМ верна следующая лемма.
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Лемма. Стационарное распределение ВЦМ { }; 0n nξ ≥ , удовлетворяющее системе 
(3), имеет следующий вид:

	

20

10

20

10

0

0

(101 ) ( ),

(210 ) ( ),

(111 ) ( ),

(211 ) ( ),
(120 ) (202 ) ,

(110) (201) ,

x

x F x

x F x

x F x

x F x
x x e µ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ
ρρ ρ
µ

−

 =


=


=
 =


= =

 = =


	 (4)

где ρ0 – константа, которая находится из условия нормировки

 ( ) 1
X

x dxρ =∫ ,   ( ) 1 ( ),   1, 2.i iF x F x i= − =  

Доказательство. Покажем, что (4) является решением (3). 
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Лемма доказана.
Построение укрупненной полумарковской модели (УПММ). Построим УПММ си-

стемы S, применяя алгоритм стационарного фазового укрупнения [12, с. 74–79]. Для это-
го необходимо:

−  задать укрупненное ФПС Ê, в соответствии с исходным ФПС;
−  вычислить вероятности перехода между состояниями, входящими в Ê,
−  вычислить средние времена пребывания в состояниях, входящих в Ê. 
Отметим, что, так как средние времена пребывания в состояниях не используются 

при построении СММ, они не приводятся в работе.
Разобьем ФПС E исходной модели на N = 8 непересекающихся подмножеств таким об-

разом, чтобы каждое из них соответствовало одному состоянию УПММ:

{ } { } { } { }
{ } { } { } { }

101 210 111 211

120 202 110 201

101 , 210 , 111 , 211 ,

120 , 202 , 110 , 201 ,

E x E x E x E x

E x E x E E

=  =  =  =  

=  =  =  =
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При таком разбиении коды ФПС УПММ будут иметь такой же физический смысл, 
что и коды ФПС E. Это объясняется тем, что мы укрупняем лишь непрерывные компонен-
ты x для указанных классов. Следует отметить, что x неизвестны для реальных систем и за-
дают остаточные времена действия случайных факторов, изменяющих состояния системы.

Таким образом, в этом случае ФПС Ê УПММ имеет вид

	 ˆ {111, , 1, 210,120, , , 201}.E =  211 10    202  110  	 (5)

Определим вероятности перехода ˆ r
kp  между состояниями, входящими в Ê, которые, 

согласно [12, с. 36; 10], находятся по формуле и будут в дальнейшем использоваться для по-
строения СММ:

	 ˆ ( ) ( , ) ( ), , 1, ,
k

r
k r k

E

p dx P x E E k r Nρ ρ=   =∫ 	 (6)

где ρ(dx)  – стационарное распределение ВЦМ { }; 0n nξ ≥ , заданное формулами (4); 
( , )rP x E  – вероятности перехода ВЦМ { }; 0n nξ ≥ .

Используя формулы (2), (4), (6) и полумарковскую модель системы S, получим
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остальные ˆ 0r
kp = , ∧  обозначает знак минимума. 

Построение скрытой марковской модели. Определим СММ [9; 10]:
1. Множество состояний СММ соответствует множеству (5). 
2.  Матрица переходных вероятностей между состояниями системы состоит из пере-

ходных вероятностей (7). 
3. Предположим, что во время функционирования системы S состояния ВЦМ укруп-

ненной модели скрыты. Заметим, что это предположение оправдано для большинства 
технических систем. Зададим множество сигналов модели таким образом, чтобы сигнал 
соответствовал информации, которую можно было бы получить практически для любой 
технической системы. Тогда множество сигналов модели имеет вид
	 J = {0, 1, 2},	 (8)
где 0 – система неработоспособна (отказ);

1 – система работоспособна: функционирует только один компонент (неизвестно, ка-
кой именно);

2 – система работоспособна: K1 и K2 функционируют.
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Таблица 1
Связь R(s | x) состояний с сигналами

Состояние, x
Сигнал, s «Старт» 111 211 101 210 110 201 120 202

s = 0 0 0,01 0,01 0,01 0,01 0,01 0,01 0,98 0,98
s = 1 0 0,01 0,01 0,98 0,98 0,98 0,98 0,01 0,01
s = 2 1 0,98 0,98 0,01 0,01 0,01 0,01 0,01 0,01

Примечание: составлена автором на основе полученных данных в ходе исследования.
4. Зададим связь между состояниями ВЦМ УПММ и сигналами (8), определив функ-

цию связи R(s | x) [15], которая представлена в табл. 1. Отметим, что указанные в табл. 
1 вероятности сигналов выбраны так, что сигнал для соответствующих состояний, кроме 
начального, может определяться с ошибкой.

5. В начальный момент времени УПММ находится в состоянии «старт», из  которого 
она может перейти только в 101 или 210  с вероятностями 

( )1 2 1 2
0

( ) ( )P f t F t dtα α
∞

< = ∫  или ( )1 2 2 1
0

( ) ( )P f t F t dtα α
∞

> = ∫
соответственно. Переходы в остальные состояния из состояния «старт» невозможны. 

Пункты 1–5 полностью описывают  СММ на основе УПММ.
Следуя [9; 10], используем построенную СММ для анализа УПММ. Проведем анализ и  

прогнозирование состояний УПММ на основе построенной СММ, следуя [15; 16, с. 269–275].
Иллюстративный пример. Рассмотрим систему S, для которой:
1) среднее время восстановления обоих элементов Mβ = 2 ч, то есть μ = 0,5;
2)  средние времена безотказной работы первого и второго элементов равны Mα1 = 30 ч  

и Mα2 = 25 ч соответственно, а СВ α1, α2  имеют следующие распределения:
Случай 1. Эрланга IV порядка с параметрами λ1 = 2/15 и λ2 = 4/25, k = 4 (Mα1 = 30 ч, 

Mα2 = 25 ч).
Случай 2. Релея с параметром 1 60 2σ π=  и показательное с параметром λ2 = 1/25  

(Mα1 = 30 ч, Mα2 = 25 ч).
Случай 3. Вейбулла с параметрами λ = 33,6; k = 3 и Эрланга IV порядка с параметром 

λ2 = 4/25, k = 4 (Mα1 = 30,004 ч, Mα2 = 25 ч).
Случай 4. Вейбулла с параметрами λ = 33,6; k = 3 и показательное с параметром λ2 = 1/25  

(Mα1 = 30,004 ч, Mα2 = 25 ч).
Предположим, что в результате функционирования системы S получен следующий век-

тор сигналов (n = 30):

( )30 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1 .s =

Отметим, что в силу специфики рассматриваемой модели, при задании вектора сигна-
лов необходимо учитывать следующее:

− после сигнала «2» всегда следует сигнал «1»;
− после сигнала «0» всегда следует сигнал «1»;
− после сигнала «1» может стоять либо сигнал «2», либо сигнал «0».
С использованием разработанной СММ получены следующие результаты:
1. УПММ находилась в состояниях с соответствующими вероятностями, представлен-

ными в табл. 2, на 30-м шаге (в момент испускания 30-го сигнала). 
Таблица 2

Вероятность нахождения модели в состояниях на 30-м шаге

Состояние 111 211 101 210 110 201 120 202

Случай 1 0 0 0,4569 0,5423 0,0004 0,0004 0 0
Случай 2 0 0 0,4545 0,5447 0,0004 0,0004 0 0
Случай 3 0 0 0,4580 0,5412 0,0004 0,0004 0 0
Случай 4 0 0 0,4546 0,5446 0,0004 0,0004 0 0

Примечание: составлена автором на основе полученных данных в ходе исследования.
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2. Прогноз состояний. УПММ переходит в следующее состояние на 31-м шаге с вероят-
ностями (прогноз состояния), представленными в табл. 3. 

Таблица 3
Прогноз состояния модели на 31-м шаге

Состояние 111 211 101 210 110 201 120 202

Случай 1 0,4209 0,5066 0 0 0 0 0,0361 0,0364
Случай 2 0,4212 0,5090 0 0 0 0 0,0361 0,0337
Случай 3 0,4219 0,5055 0 0 0 0 0,0360 0,0365
Случай 4 0,4213 0,5087 0 0 0 0 0,0363 0,0337

Примечание: составлена автором на основе полученных данных в ходе исследования.

3. Сигналы на следующем 31-м шаге (прогноз сигнала) появляются с вероятностями:
случай 1: сигнал 2 с вероятностью 0,90966, 0 – 0,08034, 1 – 0,01;
случай 2: сигнал 2 с вероятностью 0,91233, 0 – 0,07767, 1 – 0,01;
случай 3: сигнал 2 с вероятностью 0,90963, 0 – 0,08037, 1 – 0,01;
случай 4: сигнал 2 с вероятностью 0,91214, 0 – 0,07786, 1 – 0,01.
4. Вероятность появления (испускания) вектора сигналов s30:
случай 1: s30 = 0,018481; случай 2: s30 = 0,017874;
случай 3: s30 = 0,018494; случай 4: s30 = 0,017918.
5. Определение наиболее вероятной последовательности смены состояний. Для вектора 

сигналов s30 найдем наиболее вероятные состояния (состояния с максимальной вероятно-
стью из возможных состояний на каждом переходе) СММ на переходах. В табл. 4 указаны 
наиболее вероятные состояния СММ на указанных в ней переходах с соответствующими 
вероятностями. 

Таблица 4
Состояния СММ на переходах с максимальной вероятностью

Случай 1
Номер перехода 4 9 14 19 21 22 29
Состояние 210 211 210 211 120 201 211
Вероятность 0,52208 0,54115 0,55048 0,56539 0,44589 0,44589 0,55115

Случай 2
Номер перехода 4 9 14 19 21 22 29
Состояние 210 211 210 211 120 201 211
Вероятность 0,52934 0,54592 0,54670 0,55391 0,44166 0,44166 0,54702

Случай 3
Номер перехода 4 9 14 19 21 22 29
Состояние 101 211 210 211 202 110 211
Вероятность 0,50191 0,53296 0,55315 0,56793 0,44592 0,44592 0,55273

Случай 4
Номер перехода 4 9 14 19 21 22 29
Состояние 210 211 210 211 120 201 211
Вероятность 0,51801 0,54481 0,54680 0,55581 0,44197 0,44197 0,54716

Примечание: составлена автором на основе полученных данных в ходе исследования.

Из табл. 4 видно, что на 21-м и 22-м шаге для случая 3 наиболее вероятные состояния 
модели отличаются от других случаев, хотя они соответствуют физическому смыслу соот-
ветствующего сигнала. 

6. Проведем обучение модели, то есть уточним параметры матрицы переходных веро-
ятностей УПММ с целью их наиболее точного согласования с полученным вектором сиг-
налов, используя алгоритм Баума – Велша [15]. На рис. 2 представлены исходная матрица 
переходных вероятностей j

iP  и уточненная матрица переходных вероятностей j
iP , полу-

ченная в результате обучения.
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Рис. 2. Матрицы j
iP  и j

iP  для разных случаев распределения случайных величин α1, α2. 
Примечание: составлен автором на основе полученных данных в ходе исследования

На рис. 2 столбцы и строки приведенных 
матриц соответствуют состояниям «Старт», 
111, 211, 101, 210, 110, 201, 120, 202 в при-
веденной последовательности. 

Для того, чтобы определить наиболее 
вероятную последовательность состояний, 
соответствующую вектору сигналов s30, 
кроме выбора на каждом шаге состояния 

с наибольшей вероятность (как в пункте 5), 
можно также использовать алгоритм Витер-
би [15; 16 с. 273–275]. Применим его к СММ 
с полученными после применения алгорит-
ма Баума – Велша уточненными матрицами 
переходных вероятностей. Получим следу-
ющие последовательности состояний, наи-
лучшим образом согласующиеся с s30: 
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− случай 1: «старт», 210, 211, 101, 111, 
210, 211, 101, 111, 210, 211, 101, 111, 210, 
211, 101, 111, 210, 211, 101, 202, 110, 211, 
101, 111, 210, 211, 101, 111, 210;

− случай 2: «старт», 210, 211, 101, 111, 
210, 211, 101, 111, 210, 211, 101, 111, 210, 
211, 101, 111, 210, 211, 101, 202, 110, 211, 
101, 111, 210, 211, 101, 111, 210;

− случай 3: «старт», 210, 211, 101, 111, 
210, 211, 101, 111, 210, 211, 101, 111, 210, 
211, 101, 111, 210, 211, 101, 202, 110, 211, 
101, 111, 210, 211, 101, 111, 210;

− случай 4: «старт», 210, 211, 101, 111, 
210, 211, 101, 111, 210, 211, 101, 111, 210, 
211, 101, 111, 210, 211, 101, 202, 110, 211, 
101, 111, 210, 211, 101, 111, 210.

Отметим, что после обучения модели 
получаются одинаковые последовательно-
сти наиболее вероятных состояний для всех 
случаев распределения СВ α1, α2. 

Заключение
В данной работе построена СММ на ос-

нове укрупненной полумарковской модели 
ДС горячего резервирования. Для различ-
ных распределений времен безотказной ра-
боты компонентов системы решены задачи 
прогнозирования последующих состояний 
и сигналов, определения наиболее вероят-
ной последовательности смены состояний 
для заданного вектора сигналов и др. Разра-
ботанная СММ позволяет также получить 
решения представленных задач при различ-
ных ошибках в сигналах. Показано, что по-
сле обучения модель дает одинаковый ре-
зультат для последовательностей наиболее 
вероятных состояний при различных случа-
ях распределения СВ α1, α2, но одинаковых 
значениях Mα1, Mα2. В дальнейшем плани-
руется построение СММ дублированных 
систем различной структуры и разработ-
ка СММ с непрерывными наблюдениями.
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