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В статье предложена методика трехмерного машинного зрения для роботизированных участков много-
номенклатурного мелкосерийного производства. Цель исследования – повышение адаптивности, гибкости 
и мобильности производства на основе разработки метода машинного зрения, позволяющего оперативно 
передавать роботу-манипулятору точные координаты заготовок и инструмента при смене номенклатуры вы-
пускаемых изделий. Научная новизна подхода заключается в первичном обнаружении не самих объектов, 
а их посадочных ячеек, обозначенных стабильными фиксирующими ограничителями с высококонтраст-
ными AprilTag-метками. Эти метрические ориентиры образуют опорную сетку, относительно которой вы-
полняются все дальнейшие измерения, что исключает зависимость от формы и оптических свойств дета-
лей, уменьшает число ложных срабатываний и существенно упрощает переналадку. Методика использует 
адаптивное фоновое вычитание на основе модели смеси гауссовых распределений с локальной контурной 
или нейросетевой детекцией объектов и стереозрением с динамической калибровкой типа eye-in-hand, реа-
лизованной средствами Robot Operating System. Экспериментальные испытания подтвердили устойчивость 
алгоритма при недостаточных условиях освещенности и частых сменах номенклатуры изделий, а также 
высокую точность локализации и производительность обработки данных. Полученные результаты демон-
стрируют практическую эффективность предложенной методики и возможность ее применения для гибкой 
автоматизации манипуляционных задач в условиях многономенклатурного мелкосерийного производства.
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The article proposes a three-dimensional machine vision technique for robotic sections of multi-product small-
batch production. The aim of the study is to increase the adaptability, flexibility, and mobility of production based on the 
development of a machine vision method that allows the robot manipulator to quickly receive the exact coordinates of 
workpieces and tools when changing the range of products manufactured. The scientific novelty of the approach lies in 
the initial detection not of the objects themselves, but of their mounting cells, marked with stable fixing restraints with 
high-contrast AprilTag marks. These metric landmarks form a reference grid relative to which all further measurements 
are performed, which eliminates dependence on the shape and optical properties of parts, reduces the number of false 
positives, and significantly simplifies retooling. The method uses adaptive background subtraction based on a Gaussian 
mixture model with local contour or neural network object detection and stereo vision with dynamic eye-in-hand 
calibration implemented by the Robot Operating System. Experimental tests confirmed the stability of the algorithm 
under insufficient lighting conditions and frequent changes in the product range, as well as high localization accuracy 
and data processing performance. The results demonstrate the practical effectiveness of the proposed methodology and 
its applicability for flexible automation of handling tasks in multi-product small-batch production.
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Введение
Современное мелкосерийное производ-

ство, характеризующееся частой сменой 
номенклатуры изделий, требует от роботи-
зированных технологических комплексов 
(РТК) высокой степени адаптивности, гиб-
кости и мобильности. Ключевой задачей 
становится обеспечение точной локализа-
ции координат заготовок и технологической 
оснастки на рабочих столах с последующей 
привязкой к системе координат робота-ма-

нипулятора. Особенную важность данная 
задача приобретает для мобильных ком-
плексов, положение которых не является 
фиксированным в пространстве и носит 
случайный характер. Под «мобильным ком-
плексом» далее понимается конструкция 
из мобильной платформы с установленным 
на ней роботом-манипулятором. В этом 
случае необходимо постоянно осущест-
влять и корректировать привязку систем 
координат мобильного робота-манипуля-
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тора не только с координатами заготовок, 
но и с расположением самих рабочих сто-
лов с манипулируемыми технологически-
ми объектами. Применение предложенной 
методики автоматической калибровки и де-
текции позволяет минимизировать ручное 
вмешательство, существенно снизить время 
переналадки, повысить гибкость и мобиль-
ность технологического процесса.

Анализ существующих результатов ис-
следований показывает, что значительное 
внимание авторы уделяют методам повы-
шения точности позиционирования и кали-
бровки роботизированных систем. В работе 
V. Burde и соавт. [1] предлагается, напри-
мер, использовать автоматическую кали-
бровку рабочего пространства на основе 
гомографического матричного преобразо-
вания. Недостатком данного метода явля-
ется отсутствие поддержки обнаружения 
в условиях недостаточного освещения. 
H.-N. Nguyen и его коллеги представили 
гибридный метод калибровки, объединяю-
щий идентификацию модели робота и ком-
пенсацию ошибок на основе использования 
нейронных сетей [2], но без учета изменчи-
вости производственных условий. Схожие 
задачи рассмотрены в работах D. Allegro и  
Z. Jiang, в которых предлагается метод мно-
гокамерной калибровки с камерой, уста-
новленной на манипуляторе («eye-in-hand») 
[3, 4]. Следует отметить, что данный метод 
не предусматривает быстрой переналадки 
при смене номенклатуры выпускаемых из-
делий, поскольку жестко зависит от кон-
кретной конфигурации камер на манипу-
ляторе и не устраняет необходимость при-
сутствия человека в ходе данной операции. 
Также стоит упомянуть подробный науч-
ный обзор методов калибровки для роботи-
зированных систем I. Enebuse и коллектива, 
включающий классические, оптимизацион-
ные и современные методы вариации [5]. 
Однако стоит отметить, что данный обзор, 
несмотря на обширный охват различных 
методов калибровки, основан преимуще-
ственно на детерминированном подходе. 
При этом в обзоре недостаточно подробно 
рассмотрена проблема асинхронности пере-
дачи данных при онлайн-калибровке, а так-
же влияние помех и шумов, что снижает 
применимость результатов для критичных 
к точности систем.

Важным направлением исследований 
является разработка алгоритмов машин-
ного обучения и компьютерного зрения. 
J. Wang и его команда рассмотрели особен-
ности визуального восприятия и оценки 
глубины при роботизированной сварке [6], 
однако метод чувствителен к изменению 
освещенности и поэтому не может быть 

использован для мобильных роботов-ма-
нипуляторов, которым приходится рабо-
тать в переменных условиях. M. Li с кол-
легами представили систему управления 
роботизированной сваркой с улучшенным 
алгоритмом YOLOv5 и датчиками глубины 
[7]. Существенным ограничением данно-
го метода являются стационарные условия 
работы установки, так как в предложенном 
решении не учтены вопросы переналадки 
системы при изменении производственной 
задачи. В исследовании G. Velickaite так-
же отмечено, что замена детекторов меток 
на глубокие модели семейства YOLO по-
вышает устойчивость распознавания меток 
при засвете и частичных окклюзиях, что об-
легчает идентификацию по классам [8]. Не-
достатком данного решения является зави-
симость от размеченных данных и условий 
съемки, а также необходимость переобуче-
ния при изменении сцены и набора меток.

Различные варианты калибровки под-
робно рассмотрены в работе коллектива 
Y. Zhou [9], где для задач захвата и пере-
мещения изделий реализован способ внеш-
ней калибровки без использования меток, 
основанный на серии демонстрационных 
захватов с одновременным восстановлени-
ем внешних параметров камеры и роботи-
зированной системы. Способ обеспечивает 
высокую точность применительно к ста-
ционарным ячейкам при фиксированной 
конфигурации камер и оснастки, но пред-
полагает разовую настройку под конкрет-
ную производственную задачу и требует 
повторения процедуры при существенном 
изменении сцены. В отличие от такого под-
хода, перспективным представляется ком-
бинированный вариант, в котором система 
AprilTag-меток используется как устойчи-
вый «якорь» для ускоренной переналадки 
системы машинного зрения в роботизиро-
ванном технологическом комплексе. Рабо-
чие позиции, представленные посадочными 
ячейками, кодируются кластерами меток, 
а уточняющая детекция объектов внутри 
ячеек выполняется методами без использо-
вания меток, включая контурную и нейро-
сетевую детекции. За счет этого калибровка 
«камера-манипулятор» и положение стола 
в базовой системе координат робота оста-
ются неизменными, а смена номенклатуры 
выпускаемых изделий сводится к механиче-
ской перестановке ячеек с метками без по-
вторной калибровки сцены.

В работе М.В. Егорцева описывается 
практичная и доступная система машинного 
зрения с применением одной камеры и ис-
пользованием алгоритма SURF (Speeded-
Up Robust Features) [10]. Недостатком пред-
ложенной системы является зависимость 
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от одиночной камеры без глубины, чувстви-
тельной к окклюзиям. Кроме того, распоз-
навание объектов с применением алгоритма 
SURF затруднительно по отношению к сла-
ботекстурным и блестящим объектам. Про-
блематика отражающих, слаботекстурных 
поверхностей и устойчивости к дефектам 
освещения также подробно систематизиро-
вана в научном обзоре A. Ibrahim в рамках 
промышленного визуального контроля [11].

Различные методы локализации и захва-
та объектов исследовались К. Kimble и кол-
легами, которые предложили стандарты 
для оценки роботизированных систем 
сборки мелких деталей [12], однако вопро-
сы оперативной переналадки в данной ра-
боте остались без внимания. В исследова-
нии C.-H. Tsai с соавт. предложен метаметод 
позиционирования, основанный на машин-
ном обучении [13]. Недостаток метода со-
стоит в том, что результат обучения может 
быть применим только для рассмотренного 
класса заготовок и не учитывает необхо-
димость оперативной адаптации к новым 
типам объектов. При каждом изменении 
номенклатуры обрабатываемых деталей не-
обходимо проводить повторные исследова-
ния, что снижает производительность тех-
нологического процесса. 

В прикладных задачах комплектования 
коллективы G. Boschetti и M. Ojer предста-
вили фреймворки и приемы для взаимодей-
ствия человека и робота, демонстрирующие 
прирост производительности. Вместе с тем 
в работах [14, 15] не отражены вопросы на-
дежной локализации и быстрой переналад-
ки производства.

Z. Wang и A. Westman использовали тех-
нологию SLAM (simultaneous localization 
and mapping)  – одновременную локализа-
цию и построение карты на основе меток, 
устойчивую к шумам и искажениям [16, 17], 
но не затронули задачу переналадки.

В работе A. Chen и его группы описан 
адаптивный метод оптимизации захвата 
объектов с использованием датчиков глу-
бины [18], однако предложенное решение 
не предусматривает автоматическое пере-
обучение при смене заготовок. N. Guo с  
коллегами разработали метод оценки позы 
объекта и адаптации захвата на основе ана-
лиза геометрии и облака точек, но оставили 
без внимания автоматическую переналадку 
технологической системы [19].

Таким образом, проведенный анализ по-
казал, что большинство существующих под-
ходов направлено на решение узкоспециали-
зированных задач обнаружения, калибровки 
и захвата объектов определенной формы 
без учета комплексной проблемы оператив-
ной переналадки системы машинного зрения 

при смене номенклатуры изделий, перемен-
ных координат самого робота-манипулятора 
и недостаточных условиях освещенности ра-
бочей зоны. Это затрудняет интеграцию та-
ких решений в мелкосерийное многономен-
клатурное производство и приводит к сни-
жению производительности всей системы 
в целом. На этом фоне актуальны решения, 
объединяющие устойчивую локализацию 
с использованием меток, глубинную оценку 
позы и трансформацию координат в базовую 
систему робота с целью повышения надеж-
ности в реальных индустриальных условиях 
и уменьшения зависимости от фиксирован-
ных конфигураций. 

Таким образом, традиционная методи-
ка обнаружения и идентификации объектов 
на основе меток включает в себя несколь-
ко уровней. На первом уровне кластеры 
AprilTag-меток задают устойчивую метри-
ческую сетку рабочих позиций, на втором 
уровне внутри каждой ячейки выполняется 
детекция занятости и уточняющее опре-
деление позы заготовки с помощью кон-
турного или нейросетевого детекторов, 
а передача координат в систему управления 
осуществляется через калибровку «камера 
на манипуляторе» и дерево трансформаций 
TF2 в режиме реального времени. При этом 
подход на основе меток связан с эксплуата-
ционными издержками. Во-первых, метки 
полностью разделяют задачу координат-
ной привязки и геометрические или опти-
ческие свойства заготовок, поэтому неза-
висимо от формы деталей система всегда 
распознает одни и те же опорные кластеры. 
Во-вторых, переналадка сводится к меха-
ническому изменению конфигурации яче-
ек и оснастки с заранее раскодированны-
ми метками, без повторной демонстрации 
траекторий, переобучения нейросетевых 
моделей или сложной переоценки внешних 
параметров камер. В-третьих, стоимость 
и трудоемкость наклейки и обслуживания 
AprilTag-меток практически не зависят 
от числа типов обрабатываемых изделий, 
тогда как для методов без использования 
меток расходы на сбор и разметку данных 
возрастают с ростом номенклатуры.

Для преодоления указанных недостат-
ков и обеспечения оперативной переналадки 
машинного зрения для мобильных РТК в ус-
ловиях многономенклатурного мелкосерий-
ного производства авторами предлагается 
метод, реализующий автоматизированную 
локализацию объектов и технологической 
оснастки на основе системы AprilTag-меток 
с последующим точным обнаружением 
и пространственной привязкой объектов, ми-
нимизирующий объем переналадки при из-
менении производственной задачи.
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С учетом рассмотренных работ науч-
ный вклад данной статьи можно сформули-
ровать как метод ускоренной переналадки 
системы машинного зрения для мобильных 
РТК на основе иерархической детекции 
с использованием AprilTag-меток и динами-
ческой калибровки через TF2. 

Цель исследования – повышение адап-
тивности, гибкости и мобильности произ-
водства на основе разработки метода ма-
шинного зрения, позволяющего оперативно 
передавать роботу-манипулятору точные ко-
ординаты заготовок и инструмента при сме-
не номенклатуры выпускаемых изделий.

Для достижения поставленной цели 
были решены следующие задачи:

1.  Разработана подсистема обнаруже-
ния посадочных ячеек на основе высоко-
контрастных AprilTag-меток, позволяющих 
исключить зависимость от геометрии и оп-
тических свойств перемещаемых объектов.

2.  Обеспечено стабильное распознава-
ние занятости посадочных ячеек, незави-
симо от условий освещения, светоотража-
ющих свойств поверхности, геометрии и  
фактуры перемещаемых объектов.

3.  Реализован адаптивный подход для  
уточняющей локальной детекции деталей 
с использованием классических алгоритмов 
обработки изображений и нейросетевого 
подхода на основе архитектуры YOLOv8. 

4.  Разработана подсистема преобразо-
вания координат из системы технического 
зрения в систему координат робота-мани-
пулятора, не требующей дополнительной 
калибровки при смене номенклатуры выпу-
скаемых изделий.

5.  Повышена надежность обнаружения 
и идентификации объектов путем реализа-
ции механизма подавления повторных де-
текций целей для предотвращения повтор-
ной обработки объектов.

Материалы и методы исследования
Предлагаемый метод компьютерного 

зрения предназначен для роботизирован-
ных рабочих мест мелкосерийного произ-
водства, где номенклатура изделий часто 
меняется. Основное допущение заключа-
ется в том, что каждая посадочная позиция 
изделия обозначена группой высококон-
трастных AprilTag-меток, установленных 
на фиксированных ограничителях рабочих 
столов. Такая схема позволяет перенести 
фокус детекции с непредсказуемой геоме-
трии самих заготовок на стабильные ме-
трически калиброванные «якоря» сцены 
и тем самым снизить ложные срабатыва-
ния при смене продукции. Метод реализо-
ван как ROS2-узел с пятью взаимосвязан-
ными подсистемами (рис. 1).

Первой срабатывает подсистема ROI-
маскирования. На этапе инициализации 
из YAML-конфигурации загружается би-
нарная маска областей интереса (ROI), фик-
сирующая границы рабочей поверхности. 
Для мобильного робота маска формируется 
в «канонической» системе стола и при каж-
дом кадре переносится в изображение по те-
кущей гомографии Hcam←table, чтобы положе-
ние ROI оставалось корректным при сдвиге 
мобильной платформы. Маска применяется 
покадрово к RGB-потоку, благодаря чему 
компоненты механизма, находящиеся вне 
зоны захвата, не влияют на последующую 
обработку изображения [20].

После маскирования к кадру применяет-
ся подсистема фонового вычитания MOG2, 
поддерживающая сцену с медленно изменя-
ющимся освещением и формирующая двух-
классовую карту «задний план / передний 
план». Использовалась адаптивная смесь га-
уссовых распределений по методу Zivkovic 
[21], автоматически подбирающая число 
компонент для каждого пикселя. Конфигу-
рация уровня воспроизводимости включала 
в себя следующие параметры: 

history = 500, определяет количество 
предыдущих кадров, используемых для об-
новления фоновой модели; 

varThreshold = 25, задает порог чув-
ствительности к изменениям интенсивно-
сти пикселей;

detectShadows = true, обеспечивает 
идентификацию теней с последующим их 
исключением из области переднего плана. 

Значения параметров были выбраны по  
предварительному набору на «пустой сцене». 

Далее включается подсистема обнару-
жения AprilTag-кластеров. Поток бинари-
зованных данных накладывается на син-
хронную глубинную карту стереокамеры. 
В каждом кадре система ищет априорно 
известные ID-комбинации AprilTag, об-
разующих геометрически устойчивые 
кластеры. Для повышения устойчивости 
к частичным окклюзиям гомография пло-
скости стола Hcam←table оценивается методом 
RANSAC по вершинам детектированных 
меток [22]. Совокупность обнаруженных 
меток задает координаты посадочной ячей-
ки { , , , , , }i i i i i i iC X Y Z w h θ= .

После получения координат посадочной 
ячейки запускается подсистема проверки 
заполненности ячейки. Для каждой ячейки 
Ci используется локальный прямоугольный 
ROI, параметризированный центром, разме-
рами и ориентацией. Ячейка помечается «за-
нятой», если медианная глубина точек внутри 
ROI превышает адаптивный порог zth, либо 
площадь пикселей переднего плана в ROI 
превосходит порог ath. 
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Рис. 1. Блок-схема алгоритма метода компьютерного зрения 
Примечание: составлен авторами по результатам данного исследования

Пороговые значения подбираются 
адаптивно из «эталона пустой ячейки»: 
zth  – по экспоненциально-взвешенной ста-
тистике глубины с запасом, ath  – по верх-
нему перцентилю площади переднего пла-
на. Блики и аномалии подавляются мор-
фологией и временным гистерезисом 
по N кадрам. Пусть zt  – медианная глу-
бина внутри ROI на t-м кадре для заведо-
мо пустой ячейки. Тогда экспоненциаль-
но-взвешенное среднее μz(t) и дисперсия 
по глубине ( )t

zσ  вычисляются по рекур-
рентным соотношениям:

( ) ( ) ( )1 1 , z z tt t zα αµ = − µ − +

( ) ( ) ( ) ( )( )22 21 1  z z t zt t z tα ασ = − σ − + − µ ,

где 0 < α < 1  – коэффициент сглаживания 
(в работе α = 0,05). 

Порог по высоте задается как
( ) ( ) t t

th z zz k=µ + σ .
При значении k = 2 (в предположе-

нии нормальной формы распределения) 
ожидаемая доля ложных срабатываний 
не выше 1–2 % на пустой ячейке. Ана-
логично порог по площади ath задается 
как эмпирический p-перцентиль распре-
деления площади переднего плана для пу-
стых ячеек, вычисляемый по скользящему 
окну длиной M кадров. Переоценка по-
рогов выполняется в фоновом режиме раз 
в N кадров при условии, что ячейка в тече-
ние окна наблюдений не содержит детек-
тированных объектов.

Последней в алгоритме является подси-
стема уточняющей детекции и проекции ко-
ординат. Если ROI ячейки признана «заня-
той», внутри нее локально срабатывает либо 
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контурный детектор, включающий в себя 
адаптивную пороговую обработку, поиск 
контуров и аппроксимацию минимальным 
вписанным прямоугольником, либо нейро-
сетевой детектор на основе YOLOv8-OBB. 
Центры рамок (u, v, Zcom) при этом перево-
дятся в систему координат камеры:

[ ]1 , ,1 T
cam camP Z K u v−= ,

затем – в базовую систему координат робота:

[ ],1 T
base base cam camP T P←= .

Инициализация, включающая в себя 
внутреннюю калибровку камеры на ма-
нипуляторе [13], выполняется один раз, 
далее актуальное преобразование Tbase←cam 
публикуется TF2 в режиме реального вре-
мени. В подсистеме блока подавления по-
вторных детекций полученный вектор Pt 
сравнивается с последними n опублико-
ванными центрами, и, если расстояние 
||Pt  – Pt–1|| меньше эмпирического порога, 
цель считается уже обслуженной и повтор-
но не публикуется.

Результаты исследования  
и их обсуждение

Предлагаемый метод реализован в виде 
модуля программного обеспечения, ин-
тегрированного в среду Robot Operating 
System версии ROS2 Humble. 

Для обеспечения требуемой точности 
пространственной локализации заготовок 
и технологической оснастки необходи-
мо исключить из анализа кадра области, 
не относящиеся к рабочей зоне РТК. Эта 
задача решается с помощью подсистемы 
маскирования областей интереса. На эта-
пе запуска программного модуля прово-
дится загрузка заранее подготовленной 
бинарной маски из конфигурационного 
файла формата YAML. Полученную ма-
ску применяют к каждому новому кадру, 
получаемому от камеры, посредством 
покомпонентного умножения исходно-
го изображения на бинарную маску. Это 
обеспечивает «зануление» всех пикселей, 
относящихся к областям, исключенным 
из анализа. Подобный подход значитель-
но снижает влияние на алгоритмы обра-
ботки изображений таких посторонних 
объектов, как элементы манипулятора или  
другое технологическое оборудование, 
находящееся в пределах рабочей зоны, 
и позволяет существенно сократить число 
ложных детекций, не прибегая к дополни-
тельной фильтрации.

Следующим этапом обработки кадра 
является подсистема фонового вычита-
ния, основанная на методе адаптивного 

моделирования заднего плана сцены с ис-
пользованием смеси гауссовых распреде-
лений. Для этого используется алгоритм 
MOG2 в реализации OpenCV, способный 
корректно обрабатывать сцены, осве-
щенность которых изменяется медлен-
но во времени [21]. Для каждого пикселя 
кадра MOG2 поддерживает взвешенную 
сумму нескольких гауссовских распреде-
лений, параметры которых обновляются 
с приходом каждого нового кадра. Пиксель 
принадлежит классу фона, если его теку-
щее значение Xt находится в пределах 2.5σk 
от среднего значения μk одного из фоно-
вых распределений:

2,5t k kX µ− ≤ σ ,
где σk – стандартное отклонение от k-й га-
уссовой компоненты, характеризующее раз-
брос значений около ее среднего μk. Поро-
говое значение на основе дисперсии в 2,5σk 
было подобрано эмпирически и примерно 
соответствует покрытию 98–99 % данных 
нормального распределения, что обеспе-
чивает баланс между чувствительностью 
и устойчивостью к шуму.

Если текущее значение пикселя не соот-
ветствует ни одному из известных фоновых 
распределений, алгоритм классифицирует 
его как часть переднего плана. Результатом 
работы алгоритма становится двухклассо-
вая бинарная маска, отражающая текущее 
состояние кадра (рис. 2). Благодаря этому 
обеспечивается надежное выделение ди-
намически появляющихся объектов на ра-
бочей поверхности РТК при минимальной 
зависимости от колебаний освещенности 
и теневых эффектов.

Рис. 2. Результат применения бинарной 
 маски ROI и алгоритма MOG2  
на кадре рабочей поверхности 

Примечание: составлен авторами  
по результатам данного исследования

В дополнение к фоновому вычитанию 
применяется предобработка кадра, включа-
ющая конвертацию изображения в градации 
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серого, улучшение локального контраста 
методом адаптивной гистограммы с ограни-
чением контраста CLAHE (Contrast Limited 
Adaptive Histogram Equalization) и сгла-
живание гауссовым фильтром. В типовой 
настройке использовались cliplimit = 2,0, 
tileGridSize = 8ⅹ8, ядро сглаживания 5ⅹ5. 
Процедура CLAHE вычисляет новую яр-
кость пикселей по формуле

( ) ( ) ( )( ), , ; , ,CLAHE CLAHEI x y f I x y x y= Ω′

где I(x, y) – исходная яркость пикселя в точ-
ке (x, y);

I ʹCLAHE (x, y) – преобразованная яркость 
пикселя после применения CLAHE;

Ω(x, y)  – локальная область вокруг 
пикселя (x, y), используемая для постро-
ения гистограммы и адаптивной коррек-
ции яркости.

После получения бинарной маски 
переднего плана следующим шагом яв-
ляется подсистема обнаружения AprilTag-
кластеров, отвечающих за идентификацию 
посадочных позиций изделий. На предва-
рительно подготовленную бинаризованную 
карту накладывают синхронное глубинное 
изображение, полученное стереокамерой. 
Для каждого кадра выполняется поиск за-
ранее известных комбинаций идентифика-
торов AprilTag-меток, которые формиру-
ют стабильные геометрические кластеры. 
По результатам кластеризации каждая по-
садочная позиция описывается в виде пря-
моугольного ROI:

{ , , , , , }i i i i i i iC X Y Z w h θ= ,
где Xi, Yi, Zi  – координаты центра ячей-
ки; wi, hi,  – размеры в плоскости стола, 
θi – ориентация.

Определение посадочных позиций де-
талей и инструментов становится незави-
симым от их фактической геометрии и ви-
зуальных характеристик, что значительно 
упрощает переналадку и обеспечивает по-
вторяемость результатов при изменении но-
менклатуры выпускаемой продукции.

Следующей в пайплайне является под-
система проверки заполненности каждой 
идентифицированной ячейки. Для Ci бе-
рется локальная область, заданная wi, hi, θi. 
Ячейка помечается как «занятая», если вы-
полняется одно из двух условий:

( )
1,  ,
1,  ,  
0,      

i th

i i th

z z
occupied C A a

иначе

∆ > 
 = > 
 
 

 
,

где Δzi – медианная высота над плоскостью 
дна внутри ROI, мм; 

Ai – площадь переднего плана внутри ROI; 
zth – порог по высоте, мм;
ath – порог по площади, рх2. 
Если хотя бы одна ячейка признана «за-

нятой», в ее ROI запускается контурный де-
тектор для уточнения контура детали. Вме-
сто поиска произвольных контуров по всему 
кадру алгоритм работает с небольшим чет-
ко закрепленным набором «посадочных» 
точек, что существенно уменьшает ложные 
срабатывания и упрощает ввод новых типов 
деталей. 

На рис. 3 представлена иллюстрация 
работы подсистемы обнаружения AprilTag-
кластеров и проверки заполненности поса-
дочных ячеек.

Рис. 3. Иллюстрация работы подсистемы 
обнаружения AprilTag-кластеров  

и проверки заполненности посадочных ячеек 
Примечание: составлен авторами  

по результатам данного исследования

В предлагаемой методике рассматри-
вается два варианта детектора  – нейросе-
тевой и контурный. В контурном режиме 
детекция происходит с использованием 
алгоритмов бинаризации и поиска кон-
туров, формирующих ограничивающие 
рамки объектов. Контурный детектор ра-
ботает в несколько последовательных эта-
пов, обеспечивая эффективность и низкую 
вычислительную нагрузку при обработке 
изображений с простыми геометрически-
ми формами. Первоначально изображе-
ние подвергается адаптивной пороговой 
обработке, благодаря чему достигается 
устойчивость к изменениям освещения 
и текстуры объекта. Затем на полученной 
бинарной маске выполняется поиск кон-
туров методом поиска замкнутых границ, 
после чего осуществляется аппроксимация 
формы минимальным вписанным прямоу-
гольником, который задает окончательные 
границы обнаруженного объекта. На рис. 
4 представлена схема работы контурно-
го детектора.
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Рис. 4. Схема работы контурного детектора 
Примечание: составлен авторами по результатам данного исследования

Если активирован нейросетевой режим, 
используется нейронная сеть YOLOv8-OBB. 
Стандартные параметры включали в себя 
разрешение 640x640, порог уверенности 
в пределах 0,25–0,35 и порог NMS по  IoU 
0,45. Нейросетевой детектор применяется 
для идентификации объектов со сложной 
геометрией в условиях нестабильного ос-
вещения. Нейросеть предварительно обу-
чена на специально подготовленном наборе 
изображений посадочных ячеек и типовых 
заготовок, что обеспечивает точность и на-
дежность распознавания объектов различ-
ных форм и размеров. 

Для обучения YOLOv8-OBB исполь-
зовался собственный датасет из 960 изо-
бражений ячеек, разделенный в пропорции 
70 %/15 %/15 % на обучающую, валидацион-
ную и тестовую выборки. Разметка выпол-
нялась в формате ориентированных ограни-
чивающих рамок для одного класса «заго-
товка», с привязкой к координатам ячейки. 
Для повышения обобщающей способности 
применялись аугментации, включавшие 
в себя: случайные повороты ± 15°, измене-
ния яркости и контраста ± 20 %, небольшие 
перспективные искажения (до 2 %) и до-
бавление шума. В качестве базовой архи-
тектуры использовалась модель YOLOv8n-
obb, обучение проводилось в течение 

150 эпох с размером батча 16, оптимизато-
ром Adam и начальной скоростью обучения 
1∙10–4. По результатам обучения достигнут 
mAP@.5 = 0,952 на валидационной выбор-
ке, а кривые потерь обучения и валидации 
не показывали признаков переобучения.

Оба варианта возвращают список ори-
ентированных ограничивающих рамок u,v, 
w,h,θ,Z, где u,v  – центр рамки в пикселях, 
w,h  – ее размеры, Z  – медианная глубина 
внутри рамки, θ – ориентация. Для каждой 
рамки вычисляется 3D-центр в системе ко-
ординат камеры, а затем в базовой системе 
координат робота по уже описанной схе-
ме преобразований.

После детекции объектов возникает не-
обходимость исключить повторную пере-
дачу координат объектов роботу-манипу-
лятору, так как это может привести к неже-
лательным повторным действиям. Для пре-
дотвращения такой ситуации используется 
механизм подавления повторных детекций 
обнаруженных целей. На каждом шаге ко-
ординаты вновь найденных объектов сопо-
ставляются с массивом объектов, которые 
были опубликованы на предыдущих кадрах. 
Сравнение производится путем вычисления 
евклидова расстояния между текущими Pt 
и ранее переданными координатами преды-
дущего объекта Pt-1 по следующей формуле:

( ) ( ) ( )2 2 2
1 1 1 1t t t t t t t t dupP P X X Y Y Z Z d− − − −− = − + − + − < .

Если вычисленное расстояние меньше 
установленного эмпирического порога ddup 
(в мм), объект считается уже обработанным 
и его координаты повторно не отправляют-
ся роботу. В противном случае объект счи-
тается новым, его координаты передаются 
в последующие подсистемы метода. Буфер 
хранит последние N = 5 кадров, а для гаше-
ния дрожания введено «время удержания» 
Thold = 1 с, в течение которого обслуженная 
цель остается заблокированной для повтор-
ной публикации. Значение ddup в работе ва-
рьировалось от 10 до 30 мм в зависимости 
от размеров ячеек.

Следующий этап работы системы за-
ключается в переводе пиксельных коор-
динат, полученных на этапе обнаружения 
объектов, в локальные метрические коор-
динаты рабочей зоны робота-манипуля-

тора. Этот этап является ключевым, так 
как от точности определения координат 
объектов зависит корректность последую-
щих действий робота при манипуляциях 
с деталями и инструментами.

В предлагаемом методе использует-
ся hand-eye калибровка в конфигурации 
«камера на манипуляторе» с интеграцией 
библиотеки ROS2 и подсистемы преобра-
зований координат TF2 [23]. TF2 представ-
ляет собой стандартный механизм ROS, 
который в реальном времени отслеживает 
и публикует преобразования между различ-
ными системами координат компонентов 
роботизированной системы. TF2 служит 
для публикации и композиции уже извест-
ных калибровочных преобразований в ре-
альном времени, обеспечивая корректное 
применение трансформаций. Благодаря 
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этому обеспечивается динамическое и точ-
ное преобразование координат даже в усло-
виях непрерывного движения и вибраций 
робота-манипулятора.

Первичная калибровка выполняется 
один раз и проходит в три этапа. Сначала на-
страиваются внутренние параметры и дис-
торсия камеры, после чего изображения рек-
тифицируются с использованием стандарт-
ных алгоритмов библиотеки OpenCV. Далее 
выполняется hand-eye калибровка [5, 22] 
по классической схеме AX = XB при наборе 
20 поз манипулятора, равномерно покрыва-
ющих рабочий объем над столом. В каче-
стве алгоритма использовался вариант Tsai-
Lenz, реализованный в среде ROS2. Каче-
ство калибровки оценивалось по средне-
квадратической репроекционной ошибке 
и 3D-смещению метки. Среднее значение 
составило 0,45 пикселя по изображению, 
что соответствует примерно 0,6 мм на рабо-
чей дистанции 0,7 м. В результате определя-
лось однородное преобразование от камеры 
к фланцу инструмента робота Ttool←cam. 

На третьем этапе задается положение ра-
бочей поверхности в базовой системе коор-
динат робота Tbase←table по кластеру AprilTag 
и оцененной гомографии плоскости стола. 
На этом этапе система TF2 повторную ка-
либровку не проводит, а в реальном време-
ни композирует актуальные преобразования 
по текущей кинематике робота и публикует:

Tbase←cam = Tbase←tool ∙ Ttool←cam,
где Tbase←tool берется из текущих углов зве-
ньев. Повторная hand-eye калибровка в ходе 
описанных экспериментов требуется только 
при замене камеры или изменениях ее меха-
нического крепления. Положение стола от-
носительно базовой системы робота контро-
лируется по контрольным кадрам с AprilTag 
один раз в начале каждой серии измерений.

После завершения этапа уточняющей 
детекции каждый объект описывается цен-
тром в изображении (u,v) и глубиной Zcam. 
Эти пиксельные координаты необходимо вы-
разить в базовой системе координат робота. 
Для этого используют два последовательно 
применяемых преобразования [24–26].

Сначала происходит преобразование 
пикселя к камерным 3D-координатам с уче-
том внутренних параметров камеры и пред-
варительной компенсации дисторсии. Коор-
динаты точки в камерной системе вычисля-
ются по однородной модели проекции:

( )
( )1

/ 0
/ , 0 .

1 0 0 1

x cam x x x

cam cam y cam y y y

cam
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На втором шаге осуществляется пре-
образование из системы координат каме-
ры в базовую систему координат робота. 
Для этого в ROS2 используется подсистема 
TF2, которая непрерывно публикует акту-
альную однородную матрицу перехода:

( ) ( ) ( )
0 1base cam T

R t t t
T t←

 
=  

 
, 

3 3R R ×∈ ,   3t R∈ ,
где R  – текущая ориентация камеры, t  – 
ее смещение относительно системы коор-
динат робота.

Итоговые координаты центра, ориенти-
рованного ROI, вычисляются как

( )
1 1
base cam

base cam

P P
T t←

   
   
    .

Пиксельные координаты со встроенной 
глубиной переводятся в рабочую систему 
робота, а ошибки, связанные с наклоном 
камеры, перспективой и колебаниями мо-
бильного комплекса, компенсируются ме-
ханизмом TF2. Эти 3D-координаты вместе 
с углом ориентации θ передаются в управ-
ляющий ROS-топик, на чем геометриче-
ский цикл обработки завершается. 

Пример листинга реализации описан-
ного преобразования координат с исполь-
зованием TF2 в ROS2 представлен ниже 
(листинг 1). 

В рабочей реализации данный фраг-
мент включен в состав узла ROS2  на язы-
ке Python, который инициализирует кли-
ентскую библиотеку, создает объект узла 
и обрабатывает возможные исключе-
ния TF2. Эти элементы несущественны 
для понимания математической сути пре-
образования и опущены ввиду объем-
ных листингов.

Для оценки эффективности разработан-
ного метода были проведены испытания 
системы компьютерного зрения, направ-
ленные на сравнение контурного и нейро-
сетевого детекторов. Ключевым элементом 
испытаний стала проверка точности и ста-
бильности определения координат поса-
дочных ячеек по группам AprilTag-меток, 
поскольку они являются фундаментом всей 
системы позиционирования. 
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from geometry_msgs.msg import PointStamped
from tf2_ros import Buffer, TransformListener
from tf2_geometry_msgs.tf2_geometry_msgs import do_transform_point
# Буфер TF2 и Listener создаются один раз в узле ROS2
tf_buffer = Buffer() # буфер для хранения трансформаций между системами координат
tf_listener = TransformListener(tf_buffer, node) # listener пополняет буфер

def cam_to_base(x_cam: float, y_cam: float, z_cam: float) -> PointStamped:
	 «»»Преобразует точку из СК камеры cam в базовую СК робота base.»»»
	 p_cam = PointStamped() #создаём сообщение с точкой в системе координат камеры
	 p_cam.header.stamp = node.get_clock().now().to_msg() # штамп времени кадра
	 p_cam.header.frame_id = ‘cam’ # точка задана в системе координат камеры ‘cam’
	 p_cam.point.x = x_cam  # координата X точки в системе камеры
	 p_cam.point.y = y_cam # координата Y точки в системе камеры
	 p_cam.point.z = z_cam # координата Z точки в системе камеры
	 # Берём актуальное преобразование base <- cam
	 t = tf_buffer.lookup_transform(
	    target_frame=’base’, # Целевая система координат - базовая система робота ‘base’
	    source_frame=’cam’, # исходная система координат - камера ‘cam’
	    time=rclpy.time.Time() # Используем последнее доступное преобразование
	 )
	 p_base = do_transform_point(p_cam, t) # трансформация к точке и получение 
координат в СК ‘base’
	 return p_base  # точка выраженная в базовой системе координат робота

Листинг 1. Фрагмент кода преобразования точки из системы координат камеры cam  
в базовую систему робота base с использованием TF2 на языке Python 

Примечание: составлен авторами по результатам данного исследования

В испытаниях были задействованы ро-
бот-манипулятор Universal Robots UR5, сте-
реокамера Intel RealSense D455 со стереоба-
зой 95 мм, 1280×720@30 к/с. Использованы 
метки AprilTag tag36h11, посадочные ячей-
ки представлены в виде физических лотков 
размера 100ⅹ120 мм, высота борта 20 мм. Се-
мейство AprilTag tag36h11 выбрано как ком-
промисс между помехоустойчивостью и га-
баритами маркировки. Код tag36h11 обла-
дает большим алфавитом идентификаторов 
и высоким расстоянием Хэмминга между 
кодовыми словами, что снижает вероят-
ность ложных срабатываний и ошибок де-
кодирования при засветах и частичных ок-
клюзиях. По сравнению с типовыми ArUco-
семействами это дает более надежную де-
текцию на блестящих и слаботекстурных 
поверхностях, а по сравнению с ChArUco-
таблицами не требует установки крупных 
шахматных мишеней, что важно в условиях 
ограниченных размеров ячеек.

Экспериментальная серия была органи-
зована в виде трех сценариев, отражающих 
типичные условия роботизированного ра-
бочего места:

1.  Простая геометрия (втулки, цилин-
дры) и стабильное освещение (600–700 лк), 
блики < 5 %, окклюзия меток 0 % – детали 
стандартной формы с равномерным осве-
щением и минимальными вариациями в по-
зиционировании посадочных мест.

2.  Сложная геометрия (ступенчатые 
валы) и стабильное освещение (600–700 лк), 
блики 5–10 %, окклюзия меток < 25 % – де-
тали сложной формы с большим количе-
ством мелких элементов и изменяющимися 
расположениями посадочных ячеек.

3.  Сложная геометрия и нестабильное 
освещение (120–350 лк), блики 10–20 %, 
окклюзия меток < 40 %  – детали сложной 
формы с изменяющимися условиями осве-
щения и различным взаимным расположе-
нием посадочных ячеек.

Оценка производилась по следую-
щим показателям:

1. Ошибка AprilTag – средняя евклидова 
ошибка центра кластера, мм.

2. Ошибка объекта – средняя евклидова 
ошибка 3D-центра заготовки, мм.

3.  Точность и полнота детекции (preci-
sion и recall) объектов.

4. Среднее время обработки одного ка-
дра от момента захвата изображения до пу-
бликации координат в ROS2 (мс).

Эталонные координаты центров рабо-
чих позиций и заготовок задавались в ба-
зовой системе робота путем обучения кон-
трольных точек на UR5 с помощью штатно-
го пульта ручного управления. Для центра 
каждой ячейки и для центра каждой те-
стовой заготовки выбиралось касательное 
положение захвата, после чего регистри-
ровались координаты TCP в системе base. 
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Согласно паспорту UR5 и многократным 
повторным подходам, разброс этих изме-
рений не превышал 0,2–0,3 мм, что зада-
ет верхнюю оценку погрешности эталон-
ной разметки.

Освещенность в зоне ячеек контролиро-
валась цифровым люксметром, замеры вы-
полнялись в центре рабочей области на вы-
соте 150 мм над плоскостью столов. Для сце-
нариев с нестабильным освещением уровень 
освещенности изменялся за счет регулиров-
ки мощности и направления светильников, 
при этом интервалы фиксировались по по-
казаниям люксметра. Процент окклюзии ме-
ток задавался как отношение суммарной 
площади закрытых частей AprilTag к полной 
площади всех меток в кластере. Окклюзия 
моделировалась непрозрачными масками, 
наклеенными на кромку ячейки. Блики фор-
мировались направленным светодиодным 
прожектором, а их доля оценивалась по би-
наризованной маске пересвеченных пиксе-
лей как процент от площади ROI.

Каждый сценарий испытаний проводил-
ся по 50 раз, после чего результаты усредня-
лись. В качестве базового метода сравнения 
использовалась ручная экспертная разметка 
координат посадочных мест и заготовок. Ре-
зультаты вычислительных экспериментов, 
проведенных на базе лаборатории «Умные 
производственные системы» РТУ МИРЭА, 
приведены в таблице.

При профилировании стендовой реали-
зации было установлено, что основное вре-
мя обработки кадра распределялось между 
тремя подсистемами: фоновым вычитанием 
MOG2, детекцией AprilTag и уточняющей 
детекцией внутри ячеек. Для контурного 
детектора суммарное время одного цикла 
составляло в среднем 36 мс (сценарий 1), 
из которых порядка 8–10 мс приходилось 
на обновление фоновой модели и морфоло-
гическую фильтрацию, 6–8 мс  – на детек-
цию и декодирование AprilTag и 10–12 мс – 
на локальную бинаризацию и обработку 

контуров в пределах ячеек, остальное  – 
расходы ROS2/TF2. При использовании 
нейросетевого детектора YOLOv8-OBB 
общее время увеличивалось до 60–65 мс 
за счет вычислительно затратного прохода 
модели по ограниченным областям инте-
реса, при этом вклад фонового вычитания 
и AprilTag оставался на том же уровне. 
Масштабируемость по числу ячеек опре-
делялась в первую очередь этапом детек-
ции меток. Вычислительная сложность 
возрастала пропорционально числу меток 
в поле зрения. При типичной конфигура-
ции (2 метки на ячейку) увеличение числа 
ячеек с 4 до 8 приводило к росту времени 
AprilTag-детекции примерно в 1,4–1,5 раза, 
но не изменяло затрат MOG2 и CLAHE, ко-
торые зависят только от размера кадра. На-
грузка от уточняющей детекции возрастала 
с числом «занятых» ячеек. В контурном ре-
жиме обработка дополнительных ROI пока-
зала почти линейный рост времени, а в ней-
росетевом режиме количество активных 
ячеек непосредственно определяло число 
проходов YOLOv8-OBB.

Для оценки статистической значимости 
различий между детекторами дополнитель-
но проводилась проверка распределений 
ошибок на нормальность по критерию Ша-
пиро  – Уилка и парное сравнение средних 
значений по t-критерию для связанных вы-
борок. Во всех сценариях распределение ев-
клидовой ошибки локализации не противо-
речило нормальному (p > 0,05), а разница 
между контурным и нейросетевым детекто-
ром по ошибке объекта в сценариях 2 и 3 ока-
залась статистически значимой (p < 0,01). 
Выбросы с величиной ошибки более 3σ 
встречались реже 2 % наблюдений и в ана-
лизе не исключались. Для основных метрик 
(ошибка AprilTag и ошибка объекта) 95-про-
центные доверительные интервалы не вы-
ходили за пределы среднего ± 2σ, что согла-
суется с принятым способом представления 
«среднее ± стандартное отклонение».

Результаты экспериментов по работе метода в различных сценариях

№  
сценария

Метод 
детекции

Ошибка  
AprilTag, мм

Ошибка  
объекта, мм

Precision,  
%

Recall,  
%

Время  
обработки, мс

1 Контурный 
детектор 0,5 ± 0,2 0,9 ± 0,4 97,6 96,8 36 ± 6

1 YOLOv8-OBB 0,5 ± 0,2 1,0 ± 0,5 96,5 97,0 59 ± 7

2 Контурный 
детектор 0,9 ± 0,4 3,5 ± 1,1 84,3 81,2 39 ± 6

2 YOLOv8-OBB 0,9 ± 0,4 1,6 ± 0,6 95,7 94,6 60 ± 8

3 Контурный 
детектор 1,3 ± 0,6 7,0 ± 1,3 68,5 65,3 47 ± 8

3 YOLOv8-OBB 1,2 ± 0,5 2,5 ± 0,7 90,2 88,7 64 ± 9
Примечание: составлена авторами на основе полученных данных в ходе исследования.
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Отдельно была рассмотрена ожидаемая 
теоретическая точность локализации цен-
тров ячеек. Погрешность координат цен-
тра кластера AprilTag оценивалась суммой 
вклада ошибки 2D-локализации вершин 
меток и погрешности по глубине стерео-
камеры. При рабочем диапазоне расстоя-
ний 0,6–0,8 м, фокусном расстоянии по-
рядка 850 пикселей и типичной точности 
субпиксельной локализации уголков меток 
0,1–0,2 пикселя погрешность в плоскости 
стола не превышала 0,1–0,2 мм. Для камеры 
RealSense D455 при базисе 95 мм дисперсия 
глубины составляла порядка 1–1,5 мм. Сум-
марная среднеквадратичная ошибка центра 
кластера оценивалась как

2 2 1,3 1,5 cell tag Zσ σ σ≈ + ≤ −  мм, 

что согласуется с экспериментальными зна-
чениями ошибки AprilTag в таблице.

В условиях простой геометрии и ста-
бильного освещения обе версии детекто-
ров показали сопоставимую высокую точ-
ность определения как посадочных яче-
ек по AprilTag-меткам, так и заготовок. 
При этом контурный метод показал 
преимущество по скорости обработки, 
что объясняется его меньшей вычислитель-
ной сложностью.

При увеличении сложности геометрии 
и вариативности расположения посадочных 
ячеек точность детекции по меткам AprilTag 
оставалась высокой (до 1 мм), но погреш-
ность определения координат заготовок 
у контурного детектора значительно воз-
росла, тогда как нейросетевой детектор 
YOLOv8-OBB сохранил стабильно низкие 
значения погрешности. 

В условиях нестабильного освещения 
обе версии системы показали некоторое 
ухудшение точности определения коорди-
нат посадочных меток, но нейросетевой 
детектор продемонстрировал значительно 
меньшую погрешность распознавания за-
готовок, что подчеркивает его устойчивость 
к условиям изменяющегося освещения. 

По результатам испытаний можно сфор-
мулировать следующие рабочие ограниче-
ния метода:

1. Освещенность не ниже 300 лк для со-
хранения ошибки AprilTag ≤ 1,3 мм.

2. Допустимая окклюзия меток до 40 % 
площади кластера.

3.  Доля бликов до 10–20 % в ROI, при  
превышении чего контурный детектор 
деградирует и рекомендуется переход к  
YOLOv8-OBB.

4. Hand-eye калибровка и привязка стола 
требуют повторной проверки только при ме-
ханическом вмешательстве.

Как итог, кластеры AprilTag обеспе-
чивают стабильную «якорную» привязку   
(≤ 1,3 мм даже при сложном сценарии). Вы-
бор детектора рационально делать по ус-
ловиям: контурный  – при простой геоме-
трии и стабильном свете обеспечивает 
минимальную задержку, YOLOv8-OBB  – 
при сложной форме или нестабильной осве-
щенности. Частота публикаций поз состав-
ляет примерно 28 Гц (контурный) и 16 Гц 
(YOLOv8-OBB), что позволяет подбирать 
режим под требования такта операции.

Заключение
Полученные результаты эксперимен-

тальных испытаний подтверждают эффек-
тивность и целесообразность предложен-
ного метода компьютерного зрения для ро-
ботизированных рабочих мест мелкосерий-
ного производства с часто меняющейся 
номенклатурой изделий. Использование 
AprilTag-меток в качестве стабильных ме-
трических ориентиров обеспечивает высо-
кую точность и надежность первоначаль-
ного определения координат посадочных 
ячеек. Реализованная возможность выбора 
между контурным и нейросетевым детекто-
рами позволяет гибко адаптировать систему 
под различные производственные условия, 
обеспечивая баланс между скоростью и точ-
ностью обработки. Предложенный подход 
позволяет существенно сократить количе-
ство ложных срабатываний, повысить опе-
ративность и точность переналадки робота-
манипулятора в динамически изменяющих-
ся условиях мелкосерийного производства. 

Авторы отмечают и ограничения пред-
лагаемой методики, в которые входят: не-
обходимость установки и обслуживания 
меток, достаточные условия освещенности, 
необходимость первоначальной калибров-
ки и поддержка корректной TF-иерархии. 
Особенностью представленных результа-
тов является то, что все эксперименты про-
водились на одной модели робота и одной 
камере на стационарном стенде. Влияние 
отличающейся кинематики, других типов 
стереокамер и вибраций мобильной плат-
формы специально не исследовалось. Тем 
не менее предлагаемая методика опирает-
ся на стандартный стек ROS2/TF2 и hand-
eye калибровку, что делает ее переносимой 
на другие конфигурации. Эксперименталь-
ная проверка на мобильных манипуляторах 
планируется в последующих работах. 

С точки зрения практической эффектив-
ности основной эффект от внедрения мето-
да проявляется в сокращении инженерных 
трудозатрат на повторную настройку си-
стемы машинного зрения. Переход от сце-
ноориентированной калибровки и переоб-
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учения детекторов к привязке меток ячеек 
позволяет при смене номенклатуры ограни-
читься механической перестановкой ячеек 
и обновлением конфигурационного файла 
без привлечения специалистов по компью-
терному зрению. В условиях мелкосерийно-
го производства с частыми переналадками 
это снижает затраты времени на ввод новой 
партии в работу и уменьшает риск простоев 
из-за ошибок перенастройки.

Методика целесообразна для задач ком-
плектования, обслуживания станков, бы-
строй смены оснастки в ячейках с изменя-
емой номенклатурой, а также для мобиль-
ных комплексов, в которых важно быстро 
восстанавливать привязку стола после его 
перемещения. Направления дальнейших 
исследований будут посвящены адаптив-
ной настройке порогов zth и ath с автомати-
ческим дрейф-контролем под изменения 
сцены, а также совершенствованию метода 
при частичной/полной потере части меток, 
включая трекинг кластеров, предсказание 
гомографии по прошлым наблюдениям 
и мультикамерное слияние.
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