
СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ   № 12, 2025

69ТЕХНИЧЕСКИЕ НАУКИ (1.2.2, 2.3.3, 2.3.4, 2.3.5, 2.5.3, 2.5.5, 2.5.7, 2.5.8)

УДК 620.179.16:004.032.26
DOI 10.17513/snt.40606

ГИБРИДНАЯ МОДЕЛЬ  
ДЛЯ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ ОБРАБОТКИ  

ДАННЫХ УЛЬТРАЗВУКОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
1Иванов Д.А. ORCID ID 0009-0009-4379-9872,  

1–3Кондратов Д.В. ORCID ID 0000-0003-4266-2718
1Федеральное государственное бюджетное образовательное учреждение высшего образования 

«Саратовский государственный технический университет имени Гагарина Ю.А.», Саратов, 
Российская Федерация, e-mail: d.ivanov.sstu@yandex.ru;

2Институт проблем точной механики и управления – обособленное структурное  
подразделение Федерального государственного бюджетного учреждения науки  

Федерального исследовательского центра «Саратовский научный центр  
Российской академии наук» Саратов, Российская Федерация;

3Федеральное государственное бюджетное образовательное учреждение высшего образования 
«Саратовский национальный исследовательский государственный университет  

имени Н.Г. Чернышевского» Саратов, Российская Федерация

В статье рассматривается создание гибридной нейросетевой модели для автоматического обнаружения 
дефектов по данным ультразвукового неразрушающего контроля. Основная цель работы – разработка модели, 
способной одновременно анализировать пространственные и временные характеристики ультразвуковых сиг-
налов для повышения точности и надежности диагностики. В качестве материалов исследования использова-
ны данные ультразвукового контроля сварного шва трубы из аустенитной нержавеющей стали. Методология 
включала построение гибридной модели на основе комбинации сверточных нейронных сетей для выделения 
пространственных признаков и рекуррентных слоев для анализа временных зависимостей. Обучение моде-
ли проводилось с контролем переобучения и оптимизацией гиперпараметров на размеченном наборе данных, 
разделенных на обучающую, валидационную и тестовую выборки. Результаты показали высокую эффектив-
ность предложенного подхода. Модель продемонстрировала точную классификацию повреждений на тестовой 
выборке, корректно идентифицировав все реальные дефекты. Особенностью работы модели является полное 
отсутствие ложноотрицательных срабатываний при минимальном количестве ложноположительных результа-
тов. Анализ распределения предсказанных вероятностей подтвердил способность модели принимать решения 
с высокой степенью уверенности. Разработанная гибридная архитектура может иметь практическую значи-
мость для систем промышленной диагностики и позволяет автоматизировать процесс дефектоскопии.
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нейросети, классификация

THE HYBRID MODEL FOR SPATIO-TEMPORAL PROCESSING  
OF ULTRASONIC NON-DESTRUCTIVE TESTING DATA

1Ivanov D.A. ORCID ID 0009-0009-4379-9872,  
1–3Kondratov D.V. ORCID ID 0000-0003-4266-2718

1Federal State Budgetary Educational Institution of Higher Education “Saratov State Technical 
University named after Gagarin Yu.A.”, Saratov, Russian Federation, e-mail: d.ivanov.sstu@yandex.ru;

2Institute of Precision Mechanics and Control of the Federal State Budgetary Institution of Sciences 
Federal Research Center of the Russian Academy of Sciences, Saratov, Russian Federation;

3Federal State Budgetary Educational Institution of Higher Education “Saratov Nacional Research  
State University named after N.G. Chernyshevsky”, Saratov, Russian Federation

This article discusses the development of a hybrid neural network model for the automatic detection of defects 
based on ultrasonic non-destructive testing data. The primary objective of the study is to develop a model capable of 
simultaneously analyzing the spatial and temporal characteristics of ultrasonic signals to improve the accuracy and 
reliability of diagnostics. The study utilized ultrasonic testing data from an austenitic stainless steel pipe weld. The 
methodology included constructing a hybrid model based on a combination of convolutional neural networks for spatial 
feature extraction and recurrent layers for temporal dependency analysis. The model was trained using overfitting 
control and hyperparameter optimization on a labeled dataset divided into training, validation, and test sets. The results 
demonstrated the high efficiency of the proposed approach. The model demonstrated accurate damage classification 
on the test set, correctly identifying all real defects. A distinctive feature of the model is the complete absence of false 
negatives with a minimal number of false positives. Analysis of the predicted probability distribution confirmed the 
model’s ability to make decisions with a high degree of confidence. The developed hybrid architecture may have 
practical significance for industrial diagnostic systems and allows for automation of the flaw detection process.
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Введение
Регулярный контроль сварных соеди-

нений, металлоконструкций и трубопрово-
дов методами неразрушающего контроля 
является важнейшей задачей промышлен-
ной безопасности, позволяя предотвращать 
аварии и сокращать затраты на ремонт 
оборудования. Среди различных методов 
ультразвуковой контроль (УЗК) занимает 
ведущее положение благодаря своей до-
ступности, высокой чувствительности к де-
фектам и возможности исследования объек-
тов без их повреждения. Дополнительными 
преимуществами метода являются безопас-
ность для персонала, универсальность при-
менения к различным материалам и воз-
можность проведения контроля без оста-
новки производственного процесса.

Современные исследования в области 
ультразвукового неразрушающего контро-
ля демонстрируют устойчивую тенденцию 
к интеграции методов машинного обучения, 
прежде всего глубоких нейросетевых архи-
тектур. Существенный вклад в систематиза-
цию современных подходов внесли S. Can-
tero-Chinchilla, P.D. Wilcox и A.J. Croxford, 
представившие обширный обзор ключевых 
методологических вызовов и перспектив 
применения глубокого обучения в задачах 
детекции дефектов. Авторы подчеркивают, 
что именно нейросетевые методы обеспечи-
вают качественный переход от классических 
алгоритмов к более устойчивому распозна-
ванию сложных ультразвуковых сигналов, 
что формирует основу для дальнейшего раз-
вития автоматизированных диагностических 
систем [1]. Различные типы нейронных се-
тей, включая сверточные (CNN), рекуррент-
ные (RNN) и гибридные архитектуры CNN-
LSTM, успешно применяются для анализа 
ультразвуковых сигналов в неразрушающем 
контроле, обеспечивая высокий уровень 
классификации дефектов и достоверную 
оценку их характеристик [2].

На текущий момент наибольшее число 
исследований в области обработки данных 
УЗК посвящено CNN, поскольку такие ар-
хитектуры позволяют эффективно извле-
кать пространственные признаки из ультра-
звуковых изображений. Сравнение клас-
сических алгоритмов и глубоких моделей 
проведено в работе J. Ye, S. Ito и N. Toyama. 
Авторы показали, что увеличение глубины 
сети улучшает разделение дефектных и без-
дефектных областей при анализе неодно-
родных ультразвуковых изображений [3]. 
Высокая результативность CNN подтверж-
дается и в задачах дефектоскопии бетона. 
Так, R. Slonski, K. Schabowicz и A. Krawczyk 
продемонстрировали, что сверточные сети 

позволяют уверенно выделять дефектные 
участки в сложной внутренней структуре 
материала, улучшая качество интерпрета-
ции получаемых изображений. Y. Wang и со-
авт. развили этот подход, показав, что мно-
гоуровневые CNN обеспечивают более точ-
ную локализацию повреждений и формиро-
вание детальных карт дефектов, что делает 
метод применимым для инженерной оценки 
состояния конструкций [4, 5]. В свою оче-
редь, для диагностики склеенных неодно-
родных структур D. Smagulova, V. Samaitis 
и  E. Jasiuniene адаптировали архитектуру 
VGG-16 к анализу C-scan изображений. 
Модель сохраняет высокую точность клас-
сификации даже при изменении амплитуды 
и кривизны поверхности, что свидетель-
ствует о хорошей обобщающей способности 
при работе с композитными материалами [6].

Помимо анализа статических изобра-
жений, сверточные сети успешно приме-
няются для обработки сигналов. Для задач 
анализа дифракционных ультразвуковых 
сигналов Q. Fei и др. предложили архитек-
туру, которая совмещает классификацию 
A-scan сигналов с сегментацией связных 
областей. Такой подход автоматизиру-
ет выделение дефектных зон и повышает 
точность оценки размеров трещин благо-
даря встроенным механизмам подавления 
шумов [7]. Дальнейшее развитие этого на-
правления демонстрируют Y. Shen и соавт., 
которые показали, что одномерные сверточ-
ные сети эффективно оценивают размеры 
трещин по сигналам направленных волн: 
в сравнении с многослойным персептроном 
1D-CNN дают существенно меньшую ошиб-
ку как в моделируемых, так и в эксперимен-
тальных данных, особенно при изменении 
параметров возбуждения [8]. Аналогичную 
эффективность CNN демонстрируют в за-
дачах количественной оценки коррозии ан-
керных болтов, где G. Han и соавт. приме-
нили многомасштабную CNN архитектуру. 
Учет многомодовой структуры ультразвуко-
вых волн позволил повысить точность клас-
сификации уровней коррозии и корректнее 
дифференцировать степени повреждения 
исследуемого материала [9].

Наконец, помимо композитных мате-
риалов сверточные нейросети успешно 
применяются и для мониторинга других 
сложных объектов. Например, M.A. Islam 
и G. Olm сравнили эффективность CNN и  
YOLOv5 для автоматического распознава-
ния дефектов железнодорожного полотна. 
Они показали, что CNN лучше справляется 
с бинарной классификацией участков рель-
сов, тогда как YOLOv5 обеспечивает более 
точную детекцию отдельных дефектов, 
что важно для повышения надежности же-
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лезнодорожной инфраструктуры [10]. В со-
вокупности эти исследования демонстриру-
ют, что CNN-архитектуры надежно выделя-
ют пространственные признаки в условиях 
сложной структуры материалов, неодно-
родности ультразвуковых полей и высокого 
уровня шумов. Благодаря этому сверточные 
сети фактически стали базовым инструмен-
том автоматизированной дефектоскопии 
в широком спектре задач УЗК.

Несмотря на широкое применение свер-
точных сетей в анализе пространственных 
признаков, для задач, требующих учета 
временных зависимостей, более эффектив-
ными оказываются рекуррентные архи-
тектуры. В частности, F. Zhang, L. Wang 
и  W. Ye разработали многоуровневую 
LSTM-модель, которая по данным, смоде-
лированным для алюминиевых пластин, 
уверенно восстанавливает ключевые пара-
метры включений: точность определения 
их радиуса превышает 98 %, а горизонталь-
ного положения  – 95 %. Такие результаты 
подтверждают способность LSTM надежно 
извлекать диагностически значимые при-
знаки непосредственно из временной по-
следовательности сигналов [11]. Эффектив-
ность рекуррентных моделей проявляется 
и в задачах обнаружения ламинационных 
дефектов в углеродных композиционных 
материалах: предложенная F. Zhang и соавт. 
архитектура, обученная на синтетических 
данных, позволяет прогнозировать поло-
жение и размеры дефектов при использова-
нии всего одного передатчика и приемника, 
что уменьшает требования к аппаратуре 
и облегчает промышленное внедрение [12]. 
В задачах, где требуется не только выявить 
дефект, но и точно определить его форму 
и пространственное расположение, Y. Wu 
и др. применили сочетание вейвлет-разло-
жения и GRU. Использование вероятност-
ных тепловых карт совместно с пороговой 
сегментацией обеспечивает точную оценку 
площади и трехмерных координат внутрен-
них повреждений, что делает этот подход 
особенно полезным для количественной 
диагностики сложных материалов [13]. Это 
позволяет заключить, что рекуррентные ар-
хитектуры позволяют не только выявлять 
дефекты, но и оценивать их геометрию с вы-
сокой точностью, даже при ограниченной 
аппаратной конфигурации. Таким образом, 
для задач УЗК, где критично учитывать ди-
намику сигналов и точное пространствен-
ное положение повреждений, LSTM и GRU 
модели представляют собой практически 
применимый и надежный инструмент.

Развитие методов временного анали-
за закономерно привело к появлению ги-
бридных моделей, сочетающих временные 

и пространственные признаки, что обеспе-
чивает более полное представление о струк-
туре дефектов. W. Qu и соавт. предложили 
архитектуру, объединяющую сверточные 
нейронные сети, двунаправленные рекур-
рентные сети и механизм внимания, кото-
рая одновременно обрабатывает данные 
в временной и частотной областях, выявляя 
сложные спектральные и динамические 
особенности сигналов и достигая высокой 
точности классификации (97,7  %), что по-
зволяет исследовать взаимосвязь простран-
ственных и временных признаков в ультра-
звуковых сигналах [14]. В рамках схожей 
концепции Y. Sun и др. использовали CNN 
для выделения пространственных призна-
ков и LSTM для учета временной структуры 
сигналов, применяя метод для обнаружения 
мелких повреждений на алюминиевых пла-
стинах и точного определения их координат 
даже при высоком уровне шума [15]. Похо-
жий подход реализован Y. Guo и соавт. в ар-
хитектуре FCN-GRU, способной одновре-
менно выявлять дефекты, определять их тип 
и локализовывать их, что позволяет анали-
зировать сложные пространственно-времен-
ные закономерности распространения уль-
тразвуковых волн в 3D-композитных струк-
турах с высокой пространственной не-
однородностью [16]. В совокупности эти 
результаты демонстрируют, что гибридные 
подходы, объединяющие пространственный 
и временной анализ, обеспечивают более 
точную и надежную диагностику сложных 
материалов по сравнению с методами, ис-
пользующими только один тип признаков, 
при этом рассмотренные исследования по-
казывают эффективность сочетания сверточ-
ных и рекуррентных компонентов для точной 
локализации, устойчивости к шуму и анали-
за сложных структур.

Помимо архитектурных улучшений, 
важной задачей является решение пробле-
мы недостатка размеченных данных. В этом 
направлении J. Rus и R. Fleury предложили 
подход, в котором для генерации больших 
обучающих выборок используются рекон-
фигурируемые образцы, позволяющие мо-
делировать разнообразные дефекты и усло-
вия измерений. Такой метод обеспечивает 
эффективную интерпретацию сложных 
ультразвуковых сигналов нейросетями, по-
зволяя сохранять высокую точность клас-
сификации и локализации дефектов даже 
при ограниченном и разнородном наборе 
данных [17]. Этот подход повышает устой-
чивость модели к вариациям сигналов и осо-
бенностям экспериментальной установки, 
что особенно важно для практических задач 
дефектометрии в условиях недостатка дан-
ных для обучения.
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Таким образом, существующие иссле-
дования гибридных архитектур часто фоку-
сируются на отдельных аспектах обработки 
данных и преимущественно используют 
LSTM-слои для временного анализа. В дан-
ной работе предлагается комплексный под-
ход, включающий полный цикл обработки – 
от предобработки сырых ультразвуковых 
сигналов до интерпретации предсказаний 
модели. В качестве рекуррентного компо-
нента используется GRU-архитектура, так 
как она обладает большей вычислительной 
эффективностью при сохранении способ-
ности к моделированию временных зависи-
мостей, что особенно важно для промыш-
ленного внедрения.

Цель исследования  – разработка ги-
бридной модели на основе CNN и GRU 
нейронных сетей для автоматизированной 
классификации повреждений по данным 
ультразвукового неразрушающего контро-
ля, которая предназначена для определения 
наличия или отсутствия дефекта в исследу-
емом объекте.

Материал и методы исследования
Методологической основой данного ис-

следования послужила ранее рассмотренная 
гибридная архитектура CNN-GRU, которая 
описывает общий подход к обучению моде-
ли [18]. Как демонстрирует анализ, данная 
комбинация позволяет эффективно обра-
батывать ультразвуковые сигналы за счет 
совместного использования CNN для вы-
деления локальных пространственных при-
знаков и GRU для анализа временных за-
висимостей. Для практической реализа-
ции данного подхода необходимо детально 
рассмотреть структуру модели и процесс 
ее обучения.

Архитектура предложенного решения 
включает два ключевых компонента: этап 
предобработки исходных данных и саму 
нейросетевую модель. Рассмотрим первый 
компонент  – подготовку данных для обу-
чения. Качество предобработки напрямую 
влияет на сходимость обучения и итого-
вую точность модели, поскольку исход-
ные сигналы УЗК требуют нормализации 
и специальной подготовки для эффективно-
го обучения.

В качестве исходных данных использо-
вались наборы сигналов ультразвукового 
неразрушающего контроля из исследования 
I. Virkkunen и соавт. в объеме 21 420 приме-
ров [19]. Данные представлены в виде паке-
тов файлов, содержащих:

− необработанные сигналы (файлы .bins),
− описание формата данных (файлы .meta),
− метаданные с характеристиками дефек-

тов (файлы .json),

− разметки с указанием наличия/отсут-
ствия дефектов (файлы .labels).

Общий массив данных был разделен 
на обучающе-валидационную (19 500 образ-
цов) и тестовую (1920 образцов) части. Об-
учающе-валидационная выборка дополни-
тельно разделена в пропорции 80/20 на об-
учающую (15 600 образцов) и валидацион-
ную (3900 образцов) подвыборки.

Подготовка данных для обучения моде-
ли проводилась с использованием модифи-
цированного генератора из данной работы. 
Алгоритм предобработки состоял в следу-
ющем: необработанные сигналы загружа-
ются и преобразуются в формат float32. 
Для каждого сигнала выполняется стандар-
тизация путем вычитания среднего значе-
ния и деления на стандартное отклонение. 
Целевые переменные загружаются из фай-
лов .labels, при этом для обучения модели 
используется только первый столбец, со-
ответствующий бинарной классификации. 
Затем данные формируются в батчи разме-
ром 60 образцов со случайным перемеши-
ванием. Такая размерность обеспечила оп-
тимальный баланс между эффективностью 
использования вычислительных ресурсов 
и устойчивостью процесса обучения.

Сформированные таким образом дан-
ные непосредственно подаются на вход-
ной слой нейросетевой модели. На первом 
этапе двухблочная CNN часть выполняет 
глубокое извлечение пространственных 
признаков из исходных данных. Первый 
сверточный блок использует 128 филь-
тров с ядром 5×5 для выделения базовых 
особенностей сигнала, после чего следует 
слой с 96 фильтрами с ядром 3×3 для вы-
явления более сложных паттернов. После 
каждого сверточного слоя применяется 
функция активации ReLU для введения 
нелинейности, а завершает блок опера-
ция макс-пулинга, которая значительно 
уменьшает пространственную размер-
ность данных, сохраняя наиболее инфор-
мативные признаки.

Второй сверточный блок последова-
тельно уменьшает количество фильтров 
до 64 и 48 соответственно, сохраняя размер 
ядра 3×3, что позволяет модели сфокусиро-
ваться на наиболее релевантных признаках 
и снизить вычислительную сложность. По-
сле операций свертки и ReLU активацией 
следует финальный макс-пулинг, который 
дополнительно сжимает пространствен-
ное представление данных. По завершении 
CNN части данные проходят операцию пре-
образования формы (reshape), которая под-
готавливает их для рекуррентной обработ-
ки, преобразуя пространственное представ-
ление в последовательное.
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GRU-часть модели принимает эти пре-
образованные данные и анализирует вре-
менные зависимости между извлеченными 
признаками. Первый GRU-слой с 96 нейро-
нами обрабатывает входную последователь-
ность, возвращая полную последователь-
ность скрытых состояний, что позволяет 
сохранить временной контекст для следую-
щего слоя. Второй GRU-слой с 48 нейрона-
ми агрегирует полученную информацию, 
возвращая только финальное скрытое со-
стояние. Оба слоя используют дропаут 
и рекуррентный дропаут с вероятностью 
0,2 для предотвращения переобучения и по-
вышения устойчивости модели.

Завершающая часть архитектуры со-
стоит из полносвязных слоев, которые вы-
полняют окончательную классификацию. 
Слой с 24 нейронами и ReLU активаци-
ей дополнительно преобразует признаки, 
извлеченные GRU слоями. Финальный 
выходной слой с одним нейроном и сиг-
моидной функцией активации произво-
дит бинарную классификацию, выдавая 
вероятность наличия дефекта в диапазоне 
от 0 до 1, где значения ближе к 1 указыва-
ют на высокую уверенность модели в при-
сутствии дефекта в анализируемых дан-
ных. Архитектура предложенного решения 
представлена на рис. 1.

Обучение выполнялось на процессоре 
Apple M3 с 18 ГБ RAM с использованием 
Neural Engine без внешнего GPU. Общее 
время обучения составило порядка 50 мин.

Процесс обучения модели был реализо-
ван с использованием фреймворка Tensor-
Flow и высокоуровневого Keras API. Модель 
компилировалась с оптимизатором RM-
Sprop со скоростью обучения 0,0001 и функ-
цией потерь binary_crossentropy, что опти-

мально для задачи бинарной классифика-
ции дефектов.

Для управления процессом обучения 
применялся комплекс callback-функций: 
EarlyStopping с интервалом в 10 эпох для  
предотвращения переобучения, ReduceL-
ROnPlateau с коэффициентом 0,5  и интер-
валом 5 эпох для адаптивного снижения 
скорости обучения, а также ModelCheck-
point для сохранения лучших весов мо-
дели и TensorBoard для визуализации ме-
трик обучения.

Для комплексного мониторинга произ-
водительности модели была реализована 
система логирования, которая сохраняла ме-
трики обучения после каждой эпохи, созда-
вала визуализации предсказаний и распре-
деления вероятностей, а также отслеживала 
основные показатели качества модели. Весь 
процесс обучения сопровождался сохране-
нием истории обучения, финальных весов 
модели и детальной статистики производи-
тельности для последующего анализа.

Результаты исследования  
и их обсуждение

В ходе исследования была реализована 
гибридная CNN-GRU модель для бинар-
ной классификации дефектов. Несмотря 
на установленный лимит в 100 эпох, обу-
чение завершилось досрочно на 75-й эпохе 
благодаря срабатыванию ранней остановки, 
что свидетельствует о достижении модели 
оптимальной точки обучения. На обуча-
ющей выборке модель достигла точности 
99,74 %, тогда как на валидационной  – 
99,77 %. На независимой тестовой выборке 
точность составила 99,48 % при 5 ошиб-
ках классификации, что составляет 0,69 % 
от общего числа примеров.

Рис. 2. Графики обучения модели: точность и функция потерь 
Примечание: составлен авторами по результатам данного исследования
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Рис. 3. Сравнение распределения предсказаний на разных эпохах обучения 
Примечание: составлен авторами по результатам данного исследования

Рис. 4. Нормализованная матрица обнаружения дефектов 
Примечание: составлен авторами по результатам данного исследования

Для оценки эффективности обучения 
модели были построены графики изменения 
основных метрик, результаты которых при-
ведены на рис. 2. Их анализ позволяет оце-
нить процесс сходимости модели. На гра-
фике точности наблюдается рост с неболь-
шими колебаниями как на тренировочных, 
так и на валидационных данных. Несмотря 
на их наличие, наблюдается устойчивая 
тенденция к улучшению метрик. Значения 

тренировочной и валидационной точности 
остаются близкими на протяжении всего 
обучения. График функции потерь показы-
вает общую тенденцию к уменьшению дан-
ного значения.

На рис. 3 можно наблюдать динамику 
распределения предсказаний на тестовой 
выборке на различных эпохах (в данном 
случае приведены изображения для 20-й и  
70-й эпохи соответственно). 
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Рис. 5. Анализ ошибок классификации 
Примечание: составлен авторами по результатам данного исследования

На начальных этапах обучения наблю-
дается широкое распределение вероятно-
стей, но по мере обучения вероятности сме-
щаются к крайним значениям 0 и 1, что сви-
детельствует о возрастающей уверенности 
модели в предсказаниях о факте наличия 
или отсутствия дефекта.

Нормализованная матрица обнару-
жения дефектов, изображенная на рис. 4, 
показывает, что все имеющиеся ошибки 
модели являются ложноположительны-
ми. При этом модель демонстрирует аб-
солютную чувствительность к реальным 
дефектам, не пропуская ни одного из них, 
что указывает на оптимизацию под зада-
чу максимизации вероятности обнаруже-
ния дефектов.

Распределение предсказанных вероят-
ностей на рис. 5 показывает уверенность, 
с которой модель верно идентифицирует 
дефекты, а также демонстрирует характер 
ее ошибок.

На графике можно заметить, что все 
ложноположительные срабатывания харак-
теризуются высокой уверенностью модели, 
достигая значений в диапазоне 0,6–0,8. Та-
кие показатели при ошибочных предсказа-
ниях могут говорить о том, что в данных 
присутствуют особенности, которые модель 
последовательно, но неправильно ассоции-
рует с наличием дефектов. Данная особен-
ность может быть связана с наличием ар-
тефактов, возникающих из-за специфики 

подготовки данных или особенностей из-
мерений. Такие артефакты могут иметь ви-
зуальное сходство с реальными дефектами, 
что вводит модель в заблуждение. При этом 
распределение большинства правильных 
классификаций в районе крайних значений 
0 и 1 свидетельствует о высокой эффектив-
ности модели и подтверждает ее способ-
ность к четкому разделению классов.

Несмотря на то, что в рамках данной ра-
боты сравнение с другими моделями не про-
водилось, опубликованные исследования 
демонстрируют преимущество подобных 
гибридных решений над отдельными CNN 
или GRU (LSTM), что подтверждает целе-
сообразность выбранного подхода.

Заключение
Таким образом, разработанная гибрид-

ная CNN-GRU модель продемонстрировала 
высокую эффективность для задачи иденти-
фикации дефектов по данным ультразвуко-
вого неразрушающего контроля, достигнув 
точности 99,48 % на независимой тестовой 
выборке. Данный подход успешно сочетает 
анализ пространственных и временных ха-
рактеристик сигналов, обеспечивая точное 
обнаружение повреждений при минималь-
ном количестве ложных срабатываний  – 
всего 0,69 % ошибок классификации. Клю-
чевым преимуществом модели является 
стабильность результатов: на валидацион-
ных данных достигнута точность 99,77 %, 
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что согласуется с показателями на тестовой 
выборке. Полученные результаты свиде-
тельствуют о потенциале использования 
разработанной модели в промышленных 
системах мониторинга оборудования и мо-
гут рассматриваться как основание для ее 
возможного включения в библиотеки алго-
ритмов обработки сигналов и автоматиче-
ской детекции дефектов.

Перспективы дальнейших исследова-
ний включают снижение доли ложнополо-
жительных срабатываний и усовершенство-
вание функциональности модели для оцен-
ки геометрических размеров и уровня кри-
тичности дефектов.
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