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Рассматривается задача прогнозирования итоговых оценок студентов вуза. Прогноз высокой оценки мо-
жет служить мотивацией студентам для успешного освоения соответствующей дисциплины. Для решения зада-
чи прогнозирования итоговых оценок задействован математический аппарат искусственных нейронных сетей. 
Цель исследования – разработка практически реализуемого алгоритма обучения нейронной сети для прогнози-
рования оценок обучающихся. Исследование производилось в течение 11 месяцев с использованием тестового 
примера, основанного на наборе данных из 84 признаков, собранных о 126 студентах. Для обучения нейронной 
сети предложен базовый алгоритм оптимизации весов дуг, который можно классифицировать как стохастиче-
ский градиентный спуск, который не впервые применяется при машинном обучении. Исследованы различные 
модификации базового алгоритма с целью выявления оптимальной модификации по отношению к скорости 
работы. В процессе исследования выполнены сотни однократных обучений нейронной сети. Определены зна-
чения параметров оптимальной модификации алгоритма, применение которых целесообразно с точки зрения 
скорости сходимости и количества ошибочных прогнозов. В частности, выявлено, на сколько подмножеств яв-
ляется наиболее целесообразным разделять набор данных при осуществлении кросс-валидации. В результате 
обучения точность прогнозирования в контрольной выборке является достаточно приемлемой. 
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The problem of predicting final grades of university students is considered. Predicting a high grade can serve 
as motivation for students to successfully master the corresponding discipline. To solve the problem of predicting 
final grades, the mathematical apparatus of artificial neural networks is employed. The objective of the study is 
to develop a practically implementable algorithm for training a neural network for predicting student grades. The 
study was conducted over a period of 11 months using a test example based on a dataset of 84 features collected 
from 126 students. To train the neural network, a basic algorithm for optimizing arc weights is proposed, which 
can be classified as stochastic gradient descent, which is not the first time used in machine learning. Various 
modifications of the basic algorithm were studied in order to identify the optimal modification in relation to 
operation speed. During the study, hundreds of one-time neural network training sessions were performed. The 
values of the parameters of the optimal modification of the algorithm, the use of which is advisable in terms of 
convergence rate and the number of erroneous predictions, were determined. In particular, it was revealed how 
many subsets it is most appropriate to divide the data set into when performing cross-validation. As a result of 
training, the prediction accuracy in the validation set was quite acceptable. 
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Введение
Удовлетворение потребностей государ-

ства в квалифицированных (подготовлен-
ных к работе) кадрах – это одна из главных 

целей любого образовательного учрежде-
ния профессионального образования [1]. 
В частности, это декларируется в качестве 
первой цели в уставе Чувашского государ-
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ственного университета (ЧувГУ) [2]. Ка-
чество подготовки таких кадров является 
важным фактором для определения кон-
курентоспособности образовательного уч-
реждения [3].

Качество подготовки выпускника вы-
ражает совокупность степеней его подго-
товленности со стороны различных пре-
подавателей. Отдельные преподаватели 
сообщают о степени подготовленности 
обучающихся при помощи итоговых оце-
нок по своим учебным дисциплинам. Вы-
сокая оценка может служить мотивацией 
студенту для успешного освоения соот-
ветствующей дисциплины. Подробнее мо-
тивирующие факторы для получения той 
или иной оценки студентом рассмотрены 
в работе [4]. Для информирования студен-
тов об ожидаемых оценках возможно при-
менение прогнозирования этих оценок. 
Кроме мотивации, с учетом получаемого 
прогноза возможно также проведение не-
которых мероприятий с целью повышения 
успеваемости [5]. Об актуальности прогно-
зирования успешности обучения студентов 
сообщается, к примеру, М.В. Носковым и  
соавт. [6; 7]. 

Одним из подходов к прогнозирова-
нию оценок является использование ис-
кусственной нейронной сети (НС). Для  
применения НС требуется выполнить ее 
обучение. В ЧувГУ разработано прило-
жение, позволяющее обучать НС, предна-
значенную для прогнозирования оценок 
по дисциплине «Базы данных». Ожидается, 
что, чем больше будет данных, тем точнее 
будут прогнозы [8, с. 20]. Например, в [9] 
сообщается об учете при прогнозировании 
86 признаков. В связи с этим приложение 
позволяет при прогнозировании оценок 
учитывать приблизительно столько же  – 
84 фактора (признака).

Прогнозирование осуществляется при  
помощи НС, представляющей собой про-
стой персептрон. Всего на входе НС m = 233  
значения по каждому студенту, полученные 
из 84 признаков. Имеется входной слой, со-
стоящий из 233 нейронов, и один выходной 
нейрон. Каждое из 233 входных значений 
подается на входы каждого из 233 нейронов 
входного слоя с помощью m2 дуг, обладаю-
щих весами. Как обычно в персептронах, 
каждый нейрон входного слоя вырабаты-
вает выходное значение на основе функции 
активации (см. ниже) от суммы произве-
дений входных значений на веса соответ-
ствующих дуг. Выходные значения каждого 
нейрона входного слоя подаются на вход 
выходного нейрона с помощью 233 дуг, 
имеющих веса. Выходной нейрон по тако-
му же принципу, как и остальные нейроны, 

выставляет выходное значение, используя 
функцию активации.

Кодировка признаков осуществляется 
следующим образом. На входе НС часть 
факторов учитывается как прямое чис-
ловое значение, например средняя оцен-
ка за второй семестр, а другая часть  – 
как значение 0 или 1, выражающее при-
надлежность к тому или иному кластеру, 
например, к одной из 12 групп админи-
стративно-территориальных районов. Су-
ществуют такие признаки, которые учи-
тывают широкий диапазон чисел, напри-
мер число жителей населенного пункта, 
откуда прибыл студент. В данном случае 
в качестве входного значения использует-
ся десятичный логарифм указанного чис-
ла, таким образом, диапазон значительно 
сужается, наподобие нормирования при-
знаков. Некоторые признаки нормируют-
ся, например балл ЕГЭ по физике делит-
ся на 100 как на максимальное значение. 
В итоге все признаки представлены не-
большими числами от 0 до 7, среди них 
нет стремящихся к нулю.

Задача обучения НС может быть выра-
жена как задача оптимизации:

f(x)→min,
где x – набор входных данных:

1) матрица n×m, в которой каждая стро-
ка соответствует одному из n студентов, а  
столбец – одному из m значений параметров, 
присущих студентам; min ≥ 0; min ∈ R, где 
R  – множество действительных чисел; f  – 
целевая функция;

2)  вектор-столбец итоговых оценок, по  
одной оценке Oi на студента, i = 1,…,n, где 
n – число студентов, 

при ограничениях на неравенства и при-
надлежность к доменам, присущим каждо-
му из указанных 233 значений. Например, 
значение «средний балл за 2 семестр» явля-
ется вещественным числом от 2 до 5. Име-
ются некоторые специфические ограниче-
ния: например, студент может быть из од-
ной и только одной группы административ-
но-территориальных районов.

Поскольку числовое значение на выходе 
крайнего правого нейрона, обозначаемое S, 
однозначно определяется из совокупности 
весов дуг, обозначаемой W, и m входных 
значений НС, целевая функция может быть 
выражена как усредненное по всем студен-
там значение табличной функции от значе-
ния Si на выходе крайнего правого нейрона 
и оценки Oi, полученной студентом по дис-
циплине «Базы данных»:

1
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n
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=
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где Si определяется как значение функции 
возбуждения нейрона (см. ниже).

При обучении НС некоторыми разра-
ботчиками применяется метод обратного 
распространения ошибки [10, с. 174]. Раз-
работан программный модуль, реализую-
щий данный метод для рассматриваемой 
сети, однако при анализе его кода выявлена 
положительная обратная связь, приводящая 
к чрезвычайному увеличению весов дуг 
(до значений 10 в 308 степени и т.п.). Это 
не только противоестественно, но и, в свою 
очередь, приводит к аварийному заверше-
нию программы из-за ошибок операций 
с плавающей запятой еще при неприемлемо 
высоких значениях целевой функции (около 
180, см. контрольные значения ниже).

Другой вариант оптимизации весов 
дуг  – использование метода однокоорди-
натного спуска (ОКС), однако он работа-
ет неприемлемо долго. Реализация метода 
ОКС показывает, что для совершения всего 
одной итерации (то есть исследования из-
менений в каждой из координат) требуется 
около 4 ч машинного времени на указанной 
ниже вычислительной системе. 

Время одной итерации для метода ОКС 
пропорционально произведению числа сту-
дентов n на число координат (m2 + m, по-
скольку одна координата  – это вес одной 
дуги НС), на время однократного вычис-
ления целевой функции (пропорционально 
m2 + m) и на количество экспериментальных 
значений для одной координаты (около 20). 
То есть временная сложность составляет 
nm4. Можно попытаться несколько оптими-
зировать время вычислений за счет хране-
ния части промежуточных результатов в до-
полнительных массивах, однако при этом 
потребовались бы массивы вещественных 
чисел размерностью m ×m × n, что затратно 
по размеру требуемой оперативной памяти. 
В связи с этим актуальна разработка более 
эффективного алгоритма обучения рассма-
триваемой НС. 

Цель данного исследования  – разра-
ботка практически реализуемого алгоритма 
обучения НС для прогнозирования оценок 
обучающихся. Решаемые задачи: разра-
ботать базовый алгоритм, произвести его 

программную реализацию, исследовать па-
раметры алгоритма на оптимальность с по-
мощью вычислительных экспериментов.

Материал и методы исследования
В качестве тестового примера рас-

сматривается прогнозирование оценок 
126 обучающихся в бакалавриате 3-го курса 
на кафедре компьютерных технологий Чув-
ГУ по дисциплине «Базы данных» за 2 года, 
по очной и очно-заочной формам обучения. 
В наборе данных имеются следующие оцен-
ки: «отлично», «хорошо», «удовлетвори-
тельно», «неудовлетворительно». Данные 
получены из информационных систем Чув-
ГУ «Личный кабинет и портфолио обучаю-
щихся ЧувГУ», служебного портала ЧувГУ, 
годовых отчетов студенческого научного 
общества факультета, бумажного рабочего 
журнала преподавателя и других бумаж-
ных документов. Учитывается 84 признака 
студента. Студенты, по которым не уда-
лось собрать все данные, не учитываются 
в исследовании. Полученный набор дан-
ных случайным образом делится на об-
учающую и контрольную выборки в соот-
ношении, близком к используемому в [11] 
соотношению, то есть 101 : 26 ≈ 80 : 22, 
при этом для балансировки классов целевой 
переменной по каждому из классов, то есть 
для каждого из четырех значений оценки, 
отбирается приблизительно 80 % соответ-
ствующих студентов. Так обеспечивается 
наличие представителей всех классов в кон-
трольной выборке.

Общим методом исследования является 
проведение вычислительного эксперимен-
та с вычислительной системой: ноутбук с  
процессором Intel(R) Core(TM) i5-7200U, 
2712 МГц. Результаты эксперимента об-
рабатываются методами математической 
статистики. Выявление оптимальных пара-
метров алгоритма оптимизации весов дуг 
НС представляет собой метаоптимизацию. 
При обучении НС используется кросс-
валидация типа K-fold [12]. Сокращение 
набора признаков производится с помощью 
алгоритма AdDel, принцип работы которо-
го сообщается в [11, с. 470]. Исследования 
производились с 05.12.2024 по 18.11.2025.

Разработка базового алгоритма

Предлагаемый алгоритм может рас-
сматриваться как одна из вариаций стоха-
стического градиентного спуска, нередко 
применяемого в машинном обучении [13]. 
Особенности данного алгоритма:

− целевой функцией f при оптимизации 
весов дуг является функция, напрямую за-
висящая от среднего отклонения по модулю 
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вычисленных НС оценок от фактических 
для всех студентов из обучающей выборки;

− исследуется окрестность текущей точ-
ки многомерного пространства, координаты 
которой представляют собой веса дуг НС;

− производится ряд случайных измене-
ний в относительно небольшом числе слу-
чайно выбранных координат (практически 
используется 120 изменений, то есть изме-
нения производятся в 0,22 % координат);

−  при нахождении удачных изменений 
формируется вектор изменений Δ, вдоль 
которого производятся новые изменения 
в координатах. При разработке алгоритма 
первая версия не предусматривала форми-
рования такого вектора, производился каж-
дый раз новый независимый ряд измене-
ний, при этом оптимизационный процесс, 
как правило, останавливался в локальных 
экстремумах с неприемлемо высокими 
(около 60) значениями f;

−  при удачном, то есть приводящем 
к снижению f, перемещении текущей точки 
вдоль Δ, все компоненты вектора Δ умножа-
ются на число 2 и происходит повторное пе-
ремещение по полученному вектору, и так 
несколько раз. Число подобных перемеще-
ний определяется виртуальным числом, ко-
торое не должно превышать максимума, на-
пример 100, показывающего, сколько могло 
было быть сделано перемещений без ум-
ножения Δ на 2. Ранние варианты алгорит-
ма не предусматривали умножения на 2, 
при этом скорость работы была существен-
но ниже. Максимум используется для при-
ближения к принципам естественной НС, 
в которой веса дуг не могут стремиться 
к бесконечности. 

Базовый алгоритм обучения НС следу-
ющий. 

1. Загрузить:
1.1. Обучающую выборку, путем загруз-

ки всего набора данных и загрузки сведений 
о разделении этого набора на обучающую 
и контрольную выборки.

1.2. Совокупность весов дуг НС, обозна-
чаемую W.

1.3. Сведения об активности признаков.
2. Установить параметры:
2.1. Промежуточное число итераций H.
2.2. Максимальное число изменений НС 

на итерации Nmax.
2.3. Число изменений K в Δ. 
2.4.  Общее число совершенных итера-

ций It ← 0.
3.  Повторять H раз, то есть совершать 

итерации: 
3.1. Сделать копию W, обозначаемую W1.
3.2. Вычислить целевую функцию f0 = f (W).
3.3. Установить число N изменений НС на  

данном шаге как случайное число от 1 до  Nmax. 

3.4.  Произвести N случайных измене-
ний в W1, равномерно распределенных меж-
ду входными и выходными связями (дугами 
входного и выходного слоев) по их количе-
ству. Изменения представляют собой дей-
ствительные числа от -5 до +5 с точностью 
до 3 знаков после запятой. Очистить Δ и со-
хранить сведения об изменениях в Δ.

3.5. Вычислить целевую функцию f = f (W1).
3.6. Если f ≥ f0, то перейти к следующей 

итерации цикла по H.
3.7. Иначе:
3.7.1. Скопировать f0 ← f, W ← W1. Уста-

новить фактор масштабирования Fm ← 0,5.
3.7.2. Отобразить на экран номер итера-

ции, N, f.
3.7.3. Установить счетчик шагов c ← 0.
3.7.4. Повторять, пока c < 100:
3.7.4.1. Удвоить Fm; c ← c + Fm. То есть 

произвести виртуальное увеличение c на уд-
военное значение.

3.7.4.2.  Выполнить повторные измене-
ния в весах дуг W1 на соответствующие зна-
чения Δ, умноженные на Fm.

3.7.4.3.  Вычислить целевую функцию 
f2 = f(W1).

3.7.4.4. Если f2 < f0, то:
3.7.4.4.1. Скопировать f0 ← f2, W ← W1.
3.7.4.4.2. Отобразить на экран номер 

итерации, N, f2. 
3.7.4.4.3. Перейти к следующему шагу 

(п. 3.7.4).
3.7.4.5. Иначе:
3.7.4.5.1. Произвести обратные измене-

ния в W1 по информации из Δ, то есть измене-
ния по направлению, противоположному Δ.

3.7.4.5.2. c ← c + 7, то есть произвести 
виртуальное увеличение c на 7.

3.7.4.5.3. Перейти к следующему шагу 
(п. 3.7.4).

4.  Отобразить на экран It и улучшение 
в целевой функции, полученное за шаг 3.

5. Если f > 0 & It < 200000, при указании 
пользователя откорректировать H, Nmax, K и  
перейти к шагу 3.

6. Сохранить W как результат обучения. 
Конец. 

Алгоритм является стохастическим, 
вследствие чего его временная сложность 
как функция точно не определяется, одна-
ко можно утверждать, что он многократно 
для каждого из n студентов использует под-
программу вычисления целевой функции 
с временной сложностью m2.

Результаты исследования  
и их обсуждение

Произведено исследование работы 
предложенного алгоритма с помощью про-
граммной реализации с целью разработки 
наиболее оптимального алгоритма из неко-
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торых вариантов. Модификации алгоритма, 
образующие различные варианты, такие: 

1. В п. 3.7.4.5, если Fm > 1, производить 
также уменьшение Fm в четыре раза, пред-
полагая, что можно успешно перемещать 
текущую точку в направлении Δ, но не в два 
раза дальше, чем ранее, а только в 0,5 раза.

2. Между п.п. 3.7.4.5.1 и 3.7.4.5.2 вста-
вить еще один пункт – выполнить K случай-
ных преобразований Δ, если Fm < 1 (либо 
Fm ≤ 1), так как существует вероятность, 
что если текущая точка ранее успешно пе-
ремещалась в этом направлении, она будет 
успешно перемещаться в немного изменен-
ном направлении.

Использовались как различные наборы 
признаков, генерируемые случайным обра-
зом, так и один и тот же набор признаков. 
В каждом эксперименте оптимизация про-
изводилась от исходного значения f (около 
1207) до контрольных значений  – 100, за-
тем 10. Значения 1 и тем более 0 в неко-
торых случаях оптимизационный процесс 
не достигал, несмотря на работу свыше 
2 часов, что выяснилось в результате седь-
мого по счету запуска этого процесса, по-
этому до таких значений оптимизация далее 
до некоторого момента не рассматривалась.

Всего выполнено 48 подобных экспе-
риментов. Средние значения времени до-
стижения значений f = 100 и f = 10 для раз-
личных вариантов алгоритма следующие 
(в секундах): 

1.  С уменьшением Fm и случайными 
преобразованиями Δ – 26,5 и 236.

2. Без уменьшения Fm, но со случайны-
ми преобразованиями Δ – 19 и 130,5.

3. С уменьшением Fm, но без случайных 
преобразований Δ – 69 и 722.

4. Без уменьшения Fm и без случайных 
преобразований Δ – 27 и 206.

Таким образом, наивысшую скорость 
работы показывает вариант 2, который пред-
ставлен вышеизложенным алгоритмом.

Исследована функция возбуждения (на-
зываемая также передаточной функцией, 
функцией активации) нейрона F для вариан-
та 2 как наиболее перспективного. Использо-
вались следующие значения: максимальное 
значение порога возбуждения p2 = 500, а ми-
нимальное: p1 = 0,95p2. В качестве функции 
возбуждения вначале применялась кусочно-
линейная функция, состоящая из трех линий, 
которая описывается следующим образом.

До достижения суммарного значения 
на входе σ = p1 значение F = (σ – p1) / 1000. 
При p1 ≤ σ ≤ p2 функция линейно возрастает 
по формуле F = (σ – p1) / (p2 – p1) до значе-
ния F = 1, и далее вычисляется по формуле  
F = 1 + (σ – p2) / 1000. Это значение выстав-
ляется на выход нейрона.

Однако обычно чаще в литературе гово-
рится об использовании гладкой функции 
возбуждения. Проанализировано использо-
вание в базовом алгоритме такой функции 
на основе плавной функции знака – softsign 
[14] со смещением: F = (σ – p) / (|σ – p| + 1), 
где p  – смещение относительно начала ко-
ординат (центр порога), p = 0,975p2. Вы-
полнено 20 экспериментов, в результате 
выявлено, что при p = 0 алгоритм сходит-
ся к значению 10 примерно в 1,67 раз бы-
стрее, чем при p = 487,5. Для применения 
метода обратного распространения при-
менялся также другой вид гладкой функ-
ции возбуждения – логистическая функция 
(сигмоида) [10, с. 170], однако в этом случае 
требуется проверка ограничений для воз-
ведения в степень во избежание ошибок 
арифметического переполнения. Нало-
жение подобных ограничений приводило 
к остановке оптимизационного процесса 
в локальных экстремумах, поэтому далее 
сигмоида не рассматривалась.

Применение гладкой или кусочно-ли-
нейной функции практически не оказы-
вает влияния на скорость сходимости при  
p = 487,5, то есть при смещении порога от-
носительно 0, равном 487,5.

Исследовано влияние величины поро-
га на скорость сходимости к f ≤ 10 при  ку-
сочно-линейной функции возбуждения. 
Для этого проведено по 10 экспериментов 
для каждого из трех значений p2 ∈ {1,10,500}. 
При p2 = 500 среднее время сходимости 
составило 118,6 с, при p2 = 10 составило 
95,9 с, при p2 = 1 соответственно 92,2 с. Зна-
чение p2 = 0 не исследовалось, поскольку 
минимум порога в таком случае будет со-
впадать с его максимумом.

Таким образом, целесообразно исполь-
зовать несмещенный относительно 1 порог. 
Далее в экспериментах использована гладкая 
функция возбуждения на основе функции 
softsign и параметры, оптимальность кото-
рых выявлена путем проведения ряда экспе-
риментов с варьированием этих параметров: 

1.  Число случайных преобразований 
(при добавлении таких преобразований по-
сле п. 3.7.4.5.1 базового алгоритма) K = 10.

2. Константа cstop = 100 во фразе «по-
вторять, пока c < 100» (см. п. 3.7.4 базо-
вого алгоритма; число 100 программное 
приложение позволяет изменять на другое 
целое число).

3. Центр порога возбуждения p = 0,975, 
что соответствует значению p2 = 1.

4. Nmax = 120.
Для повышения эффективности базово-

го алгоритма выполнено:
1.  Сокращение набора признаков с по-

мощью алгоритма AdDel. В итоге исполь-
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зуется 33 признака из 84. Это направлено 
не только на сокращение времени по сбору 
исходных данных, но и на избежание про-
блемы «переобучения» НС [15].

2.  Кросс-валидация типа K-fold. При  
этом исследована зависимость точности 
прогнозирования от количества подмно-
жеств (так называемых «фолдов»), на ко-
торые делится обучающая выборка набора 
данных: для 14 значений количества от 4  
до 50 проведено в среднем по 25,7 экспе-
риментов. Выявлена наибольшая целесо-
образность деления набора данных x на  
nfold = 11 подмножеств x1,…,x11, что уточне-
но проведением повышенного количества 
(40) экспериментов с этим значением. Точ-
ность выше на 4 % от среднего значения 
точности для 14 вышеуказанных значений. 
При этом усредненное время обучения 
для разных значений количества изменяет-
ся от -4 до +61 % по сравнению с временем 
при nfold = 11.

При использовании кросс-валидации 
исследована зависимость качества про-
гнозов от метода приближения к миниму-
му f в обучающей выборке. Для выявления 
среднестатистических показателей произ-

ведено по 10 раз обучение тремя методами 
(30 экспериментов): 

1.  Обучение по каждому xi (i = 1,…,11) 
непосредственно до f(xi) = 0, то есть f(xi) → 0.

2.  Сначала обучение по каждому xi  
(i = 1,…,11) до значения f(xi) = 100, затем то  
же, но до f(xi) = 10, затем, аналогично, до  
f(xi) = 0, что обозначим как f(xi) → {100,10,0}.

3. По аналогии с предыдущим методом, 
но вместо трех значений с пятью значе-
ниями f(xi): 100, 20, 7, 1, 0, что обозначим 
как f(xi) → {100,20,7,1,0}.

Обученные таким образом НС затем 
применялись для прогнозирования оценок 
в контрольной выборке. Наименьшее число 
ошибочных прогнозов получено третьим 
методом; первый метод производит в сред-
нем на 16 % больше таких ошибок, а второй 
на 5 % больше. Время работы для этих трех 
методов отличается ненамного: второй ме-
тод наискорейший, третий требует в сред-
нем на 10 % больше времени, а первый  – 
на 24 %. 

Поскольку число ошибок важнее 
при незначительном отличии скорости 
работы, наилучшим следует считать тре-
тий метод.

Усредненные значения достигаемой точности и времени исполнения  
при вариации параметров алгоритма 

Измененный параметр Время, с Точность, % Количество 
экспериментов

Ничего не изменилось 
(базовая совокупность)  81 72,9 40

nfold = 4…9  92–131 67,7…71,4 130
nfold = 10  112 70,9 30
nfold = 12  92 70,7 30
nfold ∈ {15;20;25;30;50}  78–103 69,1…70,5 130
f(xi) → {100,10,0} 99 70,6 20
f(xi) → 0 85 67,4 20
Признаки все (AdDel не применяется) 202 69,2 20
Функция активации кусочно-линейная 137 71,8 20
p = 487,5 238 71,4 20
p = 9,75 121 70,6 20
Осуществляется уменьшение Fm 98 68,6 20
K = 0 98 70,4 20
K = 5 103 69,6 20
K = 20 89 71,8 20
cstop = 10 107 66,8 20
cstop = 1000 169 73,4 20
Nmax = 60 101 69,4 20
Nmax = 400 58 70,8 20

Примечание: составлена авторами на основе полученных данных в ходе исследования.
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Числовые показатели обучения по дан-
ным экспериментов с оптимальными пара-
метрами алгоритма следующие: 

−  среднее время работы составляет 
81 с (от 50 до 152 с) при среднеквадратиче-
ском отклонении 31 с;

−  среднее количество ошибочных про-
гнозов в контрольной выборке 27,1 %, 
то есть точность прогноза 72,9 % (6,8 оши-
бок из 25, от 4 до 10 ошибок). Это можно 
считать приемлемым результатом: напри-
мер, в [1] сообщается о точности прогноза 
67 % и выше.

Затем проведена серия дополнительных 
экспериментов. При следующей совокуп-
ности значений параметров алгоритма (на-
зовем ее базовой) наблюдается повышенная 
точность прогнозирования при относитель-
но небольшом времени исполнения: 

– количество признаков сокращается в  
соответствии с алгоритмом AdDel;

– f(xi) → {100,20,7,1,0}; cstop = 100; 
Nmax = 120; K = 10; nfold = 11;
– уменьшение Fm не осуществляется;
– функция активации softsign со смеще-

нием p = 0,975.
В таблице приводятся усредненные све-

дения о достигаемой точности и затрачи-
ваемом для этого времени при изменении 
одного из параметров по сравнению с базо-
вой совокупностью с указанием количества 
проведенных при этом экспериментов.

В приведенных данных только при  
cstop = 1000 точность выше, чем при ба-
зовой совокупности значений параметров, 
однако при этом время выполнения уве-
личивается более чем вдвое. Остальные 
изменения характеризуются более низкой 
достигаемой точностью. Таким образом, 
базовая совокупность  – это, с высокой ве-
роятностью, оптимум, во всяком случае, ло-
кальный, для задачи выбора оптимальных 
значений параметров.

Заключение
Применение кросс-валидации позволяет 

значительно чаще достигать нулевых оши-
бок при обучении НС. Без использования 
данного метода оптимизационный процесс 
практически останавливался в локальном 
минимуме в одном из нескольких экспери-
ментов. С использованием кросс-валидации 
такого не произошло ни в одном из 600 вы-
полненных подряд экспериментов.

Выявлены следующие значения параме-
тров и варианты использования алгоритма, 
применение которых представляется целе-
сообразным с точки зрения скорости сходи-
мости и количества ошибочных прогнозов:

−  в векторе изменений после безре-
зультатного перехода по нему выполня-

ются случайные преобразования в коли-
честве K = 10;

− максимум виртуального числа повтор-
ных переходов по вектору изменений – 100;

−  функция возбуждения гладкая на ос-
нове softsign с центром порога срабатыва-
ния нейрона p = 0,975;

− максимальное число изменений весов 
дуг для формирования вектора изменений 
Nmax = 120.

−  уменьшения фактора масштабирова-
ния не производится;

−  кросс-валидация типа K-fold с деле-
нием набора данных на 11 подмножеств 
и последовательным обучением по каждому 
подмножеству до пяти убывающих значе-
ний целевой функции, заканчивая нулевым.

Программное приложение, реализую-
щее предложенный алгоритм, позволяет 
прогнозировать не только итоговую оценку 
по дисциплине «Базы данных», но и сред-
ний балл по всем дисциплинам за 5 се-
местр. Таким образом, алгоритм обладает 
определенной универсальностью.

Вышеизложенный алгоритм с модифи-
кацией, представляющей собой перебор 
сочетаний по три признака, реализуется ма-
гистрантами кафедры компьютерных тех-
нологий в качестве лабораторной работы 
по выбору наиболее информативной систе-
мы признаков для прогнозирования на на-
борах данных по вариантам.
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