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В работе получено полное аналитическое решение трехмерной задачи Гретца для стационарного 
течения в пористом прямоугольном канале в локально-неравновесных условиях между твердым кар-
касом и жидкостью. Моделирование основано на уравнениях конвективного теплообмена с раздель-
ными температурами фаз и включает вклад диссипации механической энергии, описываемой моделью 
Дарси. Гидродинамически развитое течение описывается моделью Бринкмана. Метод решения основан 
на разложении безразмерных температур жидкой и твердой фаз в двойные ряды Фурье по поперечным 
координатам. После применения процедуры разложения исходная система уравнений в частных произ-
водных сведена к решению обыкновенных дифференциальных уравнений для амплитуд разложения. В 
приближении, справедливом для умеренных и больших чисел Пекле, получены явные аналитические 
выражения для полей температур обеих фаз. На основе точного расчета средней объемной температу-
ры выведено замкнутое выражение для локального числа Нуссельта, учитывающее вклад теплопрово-
дности обеих фаз в суммарный тепловой поток на стенке канала. Проведен анализ влияния ключевых 
безразмерных критериев. Показано, что в локально-неравновесных условиях (малые Bi) возникает зна-
чительная разность температур фаз, что снижает число Нуссельта на 20–25 % по сравнению с режимом 
локального равновесия (Bi→∞). Диссипация вызывает монотонный рост температуры жидкости вдоль 
канала, становясь доминирующим фактором при Br > 0,5. Решение демонстрирует быструю сходимость 
и может служить эталоном для проверки численных методов, решающих сложные сопряженные задачи 
конвективного теплообмена в пористых средах.
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A complete analytical solution is obtained for the three-dimensional Graetz problem of steady-state flow in a 
porous rectangular channel under local thermal nonequilibrium conditions between the solid matrix and the fluid. 
The modeling is based on convective heat transfer equations with separate phase temperatures and includes the 
contribution of mechanical energy dissipation described by the Darcy model. The hydrodynamically developed 
flow is described by the Brinkman model. The solution method is based on expanding the dimensionless 
temperatures of the liquid and solid phases into double Fourier series in the transverse coordinates. After applying 
the expansion procedure, the original system of partial differential equations is reduced to solving ordinary 
differential equations for the expansion amplitudes. Under an approximation valid for moderate and high Péclet 
numbers, explicit analytical expressions for the temperature fields of both phases are obtained. Based on an 
accurate calculation of the mean bulk temperature, a closed-form expression for the local Nusselt number is 
derived, which accounts for the contribution of thermal conductivity from both phases to the total heat flux at the 
channel wall. An analysis of the influence of key dimensionless parameters is performed. It is established that 
under local nonequilibrium conditions (small Bi), a significant temperature difference between the phases arises, 
which reduces the Nusselt number by 20–25 % compared to the local equilibrium regime (Bi→∞). Dissipation 
causes a monotonic increase in the fluid temperature along the channel, becoming the dominant factor at Br > 
0,5. The solution demonstrates rapid convergence and can serve as a benchmark for verifying numerical methods 
solving complex conjugated convective heat transfer problems in porous media.
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Введение
Исследование конвективного теплооб-

мена в каналах, заполненных пористыми 
средами, имеет фундаментальное и при-
кладное значение для множества передовых 
технологий, таких как системы аварийного 
охлаждения активных зон ядерных реакто-
ров, высокоэффективные компактные те-
плообменники, каталитические реакторы, 
системы рекуперации тепла и терморегули-
рования электронной аппаратуры [1]. Осо-
бый интерес для создания таких устройств 
представляют современные структури-
рованные пористые материалы на основе 
трижды периодических минимальных по-
верхностей (ТПМП), обладающие опти-
мальным сочетанием прочности, проница-
емости и развитой площади поверхности 
теплообмена [2]. Классическая задача Грет-
ца о развитии температурного поля в канале 
при заданной температуре стенки служит 
краеугольным камнем в теории конвектив-
ного теплообмена и многократно обобща-
лась для учета специфики течений в насы-
щенных пористых средах [3, 4].

В ранних исследованиях, опиравших-
ся на модель однотемпературной среды, 
обычно предполагалось состояние ло-
кального термического равновесия (ЛТР), 
при котором температуры твердого каркаса 
и жидкости в каждой точке пространства 
совпадают [5]. Однако в реальных усло-
виях, например при высоких скоростях 
течения, низкой теплопроводности карка-
са или малом коэффициенте межфазного 
теплообмена, это допущение часто не вы-
полняется. В таких режимах возникает су-
щественная разность температур между 
фазами, что требует перехода к двухтемпе-
ратурным моделям или моделям локально-
го термического неравновесия (ЛТН) [6]. 
Игнорирование этого эффекта может при-
вести к значительным погрешностям в рас-
чете тепловых потоков.

Важным физическим эффектом, сопрово-
ждающим фильтрацию жидкости в пористой 
матрице, является также вязкая диссипация 
механической энергии, превращающая рабо-
ту сил трения в тепло. Ее вклад становится 
определяющим в высокоскоростных течени-
ях, в высоковязких жидкостях или в средах 
с малой проницаемостью. Влияние дисси-
пации на теплообмен в условиях локального 
неравновесия изучено недостаточно полно, 
особенно для трехмерных течений в каналах 
некруглого сечения, где геометрия попереч-
ного сечения существенно усложняет карти-
ну теплопереноса [7].

Аналитические решения подобных со-
пряженных задач представляют особую 

ценность, так как позволяют не только по-
лучить точные зависимости для ключевых 
параметров, но и выявить фундаменталь-
ные физические закономерности, служа на-
дежным эталоном для верификации и тести-
рования численных методов [8, 9]. Теорети-
ческие основы теплопроводности, заложен-
ные в классических и обобщенных моделях 
[10, 11], остаются актуальным инструментом 
для таких исследований. При моделирова-
нии сложных пористых структур, подобных 
поверхности Фишера – Коха S, особое значе-
ние приобретают современные методы чис-
ленного анализа, разработанные в работах 
[12–14]. Подробное исследование топологии 
и свойств ТПМП представлено в [15].

Несмотря на значительное количество 
работ по каждому из указанных аспектов 
в отдельности, в литературе отсутствует 
комплексное трехмерное аналитическое 
решение, которое одновременно и строго 
учитывало бы как локально-неравновесные 
условия теплопереноса между фазами, так 
и вклад вязкой диссипации энергии, с по-
следующим детальным анализом динамики 
локального числа Нуссельта. Восполнение 
этого пробела позволит более адекватно опи-
сывать теплообмен в широком классе прак-
тических устройств с пористыми вставками.

Цель исследования  – получение пол-
ного аналитического решения трехмерной 
задачи Гретца для пористого прямоугольно-
го канала в локально-неравновесных усло-
виях с учетом диссипации и анализ влияния 
определяющих безразмерных критериев 
на тепловые характеристики.

Материал и методы исследования 
Рассматривается стационарная вы-

нужденная конвекция в пористом прямо-
угольном канале с поперечными размера-
ми −H ≤ y ≤ H, −H ≤ z ≤ H и продольной 
координатой 0 ≤ x < ∞ (рис. 1). Параметр 
H представляет собой половину ширины 
и половину высоты канала (м). Среда со-
стоит из твердого каркаса и жидкой фазы, 
заполняющей поровое пространство. Фи-
зическая модель предполагает, что по-
ристая среда является однородной, изо-
тропной, жесткой и неподвижной, а тече-
ние  – ламинарным и гидродинамически 
стабилизированным. 

Принята ключевая гипотеза локально-
неравновесных условий теплообмена, по-
этому температуры жидкой Tf и твердой Ts 
фаз различны и описываются независимы-
ми уравнениями энергии. Стенки канала 
поддерживаются при постоянной темпера-
туре Tw, на входе (x = 0) температура жидко-
сти постоянна и равна Tin ≠ Tw.
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Рис. 1. Схема теплообмена в пористом прямоугольном канале: а) вид сверху, б) поперечный разрез 
Примечание: составлен авторами по результатам данного исследования

Гидродинамически развитое течение описывается моделью Бринкмана. Поле скорости 
имеет одну продольную компоненту u = u(y,z), определяемую уравнением [1]:

	
2 2

eff 2 2   0,u u u G
y z K

µµ
 ∂ ∂

+ − + = ∂ ∂ 
	  (1)

где μ – динамическая вязкость жидкости (Па·с), μeff – эффективная вязкость (Па·с), K – про-
ницаемость (м²), G = –dp / dx = const – постоянный градиент давления (Па/м). Граничные 
условия u = 0 при y = ±H, z = ±H  соответствуют условию прилипания, а условия симметрии 

/   0 u y∂ ∂ =  при y = 0, /   0u z∂ ∂ =  при z = 0 отражают геометрическую симметрию задачи.
Решение уравнения (1) дает профиль скорости в виде произведения функций [1]:
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где U – средняя скорость (м/с), а параметр S определяется как
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= =
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µ

=
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=

Здесь Da – число Дарси, а параметр S характеризует соотношение между сопротивле-
нием пористой матрицы и вязкими силами; при S → 0 течение описывается моделью Дарси 
с плоским профилем, а при больших S профиль приближается к параболическому.

Теплообмен описывается системой уравнений энергии для каждой фазы с учетом вяз-
кой диссипации по модели Дарси, где источник тепла пропорционален квадрату скорости. 
Для жидкости:

	 ( )
2 2 2
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	 (3)

для твердого каркаса, который считается неподвижным:

	 ( )
2 2 2

2 2 20  s s s
s fs f s

T T Tk h T T
x y z

 ∂ ∂ ∂
= + + + − ∂ ∂ ∂ 

, 	 (4)

где ρf  – плотность жидкости (кг/м³), cp,f – удельная теплоемкость жидкости (Дж/(кг·К)), kf  – 
теплопроводность жидкости (Вт/(м·К)); ks – теплопроводность каркаса (Вт/(м·К)); hfs – объ-
емный коэффициент межфазного теплообмена (Вт/(м³·К)). Источник диссипации задается 
моделью Дарси: Фvisc = μu2 / K (Вт/м³), что адекватно при малых числах Дарси ( 1Da ), 
когда доминирует сопротивление пористой среды.
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Граничные и начальные условия формулируются следующим образом:
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Для перехода к безразмерному виду вводятся следующие переменные и параме-
тры подобия:
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где x*, y*, z* – размерные координаты (м), Pe – число Пекле, Br – число Бринкмана, kr – от-
ношение теплопроводностей, Bi – число Био (параметр межфазного теплообмена).

Безразмерная система уравнений принимает вид
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где û = u / U, D(y,z) = û2. Граничные условия: θf = θs = 0 при y = ±1 или z = ±1; условия сим-
метрии аналогичны (5); начальное условие: θf = 1 при x = 0.

Метод решения основан на разложении безразмерных температур в двойные ряды 
Фурье по полной системе собственных функций, удовлетворяющих граничным условиям 
на стенках:
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где собственные значения λm = (2m + 1)π/2, μn = (2n + 1)π/2 обеспечивают выполнение гра-
ничных условий.

Подстановка (8) в (7) и применение процедуры разложения приводят к системе обык-
новенных дифференциальных уравнений для амплитуд Θmn(x) и Ψmn(x). Для случая Pe 1  
продольной теплопроводностью в твердой фазе можно пренебречь, что дает алгебраиче-
скую связь:

	 ( ) ( ) 2 2 2
2
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	  (9)

Тогда уравнение для Θmn(x) принимает вид

	 '' '
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+
, а коэффициенты Фурье ûmn и Dmn вычисляются через инте-

гралы от профиля скорости (2). 
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Решение (10), ограниченное при x → ∞, имеет вид

	 ( ) ( ) ( )part part Br  ,      ,mn x mn
mn mn mn mn

mn

Dx C e
K

κ− ⋅
Θ = + Θ Θ = 	  (11)

где κmn > 0 – корень характеристического уравнения, а постоянная Cmn находится из началь-
ного условия.

На основе полученного решения определяется локальное число Нуссельта, характери-
зующее интенсивность теплообмена на стенке канала. С учетом вклада обеих фаз:

	 ( )
( ) ( )

( )
,

1)
2Nu   ,

m n

mn r mnm n
m n

b

x k x
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x
λ µ

π θ

+ 
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 =
∑

	   (12)

где θb(x) – средняя объемная температура жидкости.
Результаты исследования и их обсуждение

На основе аналитического решения (8), (9), (11) и (12) выполнены расчеты тепловых 
и гидродинамических характеристик течения. Приняты следующие базовые параметры, 
если не указано иное: пористость ε = 0,5, kᵣ = 10, Br = 0,1, Bi = 1.

На рис. 2 представлены профили скорости. Как видно на рис. 2, а, с уменьшением чис-
ла Дарси (Da) профиль скорости приближается к параболическому (профилю Пуазейля 
в непористом канале). Для Da = 10-⁴ течение практически полностью описывается законом 
Дарси, профиль скорости выравнивается. Трехмерная структура поля скорости (рис. 2, б) 
и распределение его модуля в поперечном сечении (рис. 2, в) демонстрируют симметрию, 
характерную для геометрии прямоугольного канала.

Рис. 2. Профили скорости течения: а) влияние числа Дарси (Da)  
на безразмерный профиль u/U (сечение z = 0); б) трехмерное распределение  

скорости; в) контуры скорости в поперечном сечении (вид сверху) 
Примечание: составлен авторами по результатам данного исследования
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Рис. 3. Результаты решения трехмерной задачи Гретца в локально-неравновесных условиях (Bi = 1, 
Br = 0,1): а) профили безразмерной температуры жидкости θf в сечении x = 0,1 при различных 

числах Пекле; б) изменение температуры θf(0,0) вдоль канала; в) изменение локального числа Nu(x) 
Примечание: составлен авторами по результатам данного исследования

Профили безразмерной температуры 
жидкости θf в сечении x = 0,1 (рис. 3, а) по-
казывают классическую для задачи Гретца 
картину: с ростом числа Pe тепловой погра-
ничный слой у стенок становится тоньше. 
Это связано с усилением роли конвектив-
ного переноса вдоль канала по сравнению 
с поперечным кондуктивным переносом. 
При малых Pe (Pe = 1) температура успевает 
выравниваться по сечению уже на неболь-
шом расстоянии от входа.

Изменение температуры на оси кана-
ла θf(0,0,x) (рис. 3, б) подтверждает вы-
вод: для Pe = 100 температура в центре 
падает очень медленно, что свидетельству-
ет о большом расстоянии, необходимом 
для полного прогрева. При Pe = 1 темпера-
тура быстро стремится к нулю.

В начальной точке (x → 0) число Nu стре-
мится к бесконечности, что соответствует 
условию I рода на стенке при скачке темпе-
ратуры (рис. 3, в). Далее наблюдается моно-
тонное уменьшение Nu по мере прогрева 
потока и выхода на термически развитый ре-
жим. Анализ показывает, что величина числа 
Pe существенно влияет на динамику числа 
Nu в начальной области, но слабо сказыва-
ется на его асимптотическом значении вдали 
от входа.

Заключение
В работе разработан аналитический ме-

тод решения, основанный на применении 
двойных рядов Фурье. Данный метод позво-
лил получить в замкнутой форме решение 
для трехмерных полей температур жидкой 
и твердой фаз в пористом прямоугольном 

канале в рамках локально-неравновесной 
модели переноса тепла с учетом вязкой дис-
сипации механической энергии.

Проведенный параметрический анализ 
на основе полученного аналитического ре-
шения позволил количественно оценить 
влияние ключевых безразмерных критери-
ев, в первую очередь интенсивности меж-
фазного теплообмена. Установлено, что пе-
реход от условий локального термического 
равновесия (Bi → ∞) к выраженному нерав-
новесию (малые числа Био) приводит к зна-
чительному снижению – на 20–25 % – рас-
четного коэффициента теплоотдачи (числа 
Нуссельта) по сравнению с равновесным 
режимом. Показано также, что вклад вяз-
кой диссипации в энергетический баланс 
становится сравнимым с конвективным 
переносом и определяет неадиабатический 
рост температуры жидкости вдоль канала 
при числах Бринкмана Br > 0,5.

Полученное решение обладает экспо-
ненциальной сходимостью рядов и форми-
рует строгий аналитический эталон. Эта 
работа вносит вклад в теорию сопряженно-
го теплообмена и может служить для тести-
рования и верификации вычислительных 
алгоритмов, моделирующих сложные про-
цессы теплопереноса в насыщенных пори-
стых средах.
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