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В статье представлена разработка и исследование автоматизированной системы технического зрения, 
предназначенной для распознавания буквенно-цифровых маркировок на металлических заготовках в ус-
ловиях реального машиностроительного производства. Особое внимание уделено методологии предобра-
ботки изображений, которая включает последовательное применение современных алгоритмов компью-
терного зрения, адаптивную коррекцию контрастности с использованием методов линейного растяжения 
гистограммы, гауссову фильтрацию для эффективного подавления шумов различной природы, адаптивную 
бинаризацию для точного выделения символов на неоднородном фоне. Основной целью работы являет-
ся автоматизация процесса идентификации заготовок по буквенно-цифровым обозначениям, нанесённым 
на их поверхность, с последующей классификацией материалов по базе данных марок стали. Результаты 
проведенных испытаний показали, что система дает точность распознавания 98,7% при хорошей видимости 
маркировки, в условиях умеренных помех – 94,5%, а при работе с сильно поврежденными маркировками со-
храняет показатель 82,3%, что превышает установленный порог применимости. Временные характеристики 
системы остаются стабильными на всех категориях сложности, максимальное время обработки не превыша-
ет 0,31 секунды, что соответствует требованиям промышленных процессов. Проведенный сравнительный 
анализ с традиционными решениями оптического распознавания символов демонстрирует существенное 
превосходство разработанной системы – прирост точности классификации составляет в среднем 14,8%, до-
стигая 31,3% для изображений плохого качества. Ключевым фактором эффективности системы является мо-
дуль нормализации, который обеспечивает коррекцию до 96% ошибок оптического распознавания символов 
в простых условиях и до 78% – в сложных, успешно справляясь с типичными проблемами распознавания, 
включая смешение символов кириллицы и латиницы, ошибочное слияние и разрыв символов. 

Ключевые слова: машинное обучение, система технического зрения, обработка изображений, оптическое 
распознавание символов, системы технического зрения
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This article presents the development and research of an automated machine vision system designed to recognize 
alphanumeric markings on metal workpieces in a real-world mechanical engineering production environment. 
Particular attention is paid to the image preprocessing methodology, which includes the consistent application of modern 
computer vision algorithms, adaptive contrast correction using linear histogram stretching methods, Gaussian filtering 
for effective noise suppression of various types, and adaptive binarization for precise character extraction against a 
heterogeneous background. The primary goal of the study is to automate the process of identifying workpieces based 
on alphanumeric markings applied to their surface, followed by material classification using a steel grade database. 
Test results showed that the system provides a recognition accuracy of 98.7% with good marking visibility, 94.5% 
under moderate interference conditions, and 82.3% when working with heavily damaged markings, which exceeds 
the established applicability threshold. The system’s performance remains stable across all complexity levels, with 
a maximum processing time of no more than 0.31 seconds, meeting industrial process requirements. A comparative 
analysis with traditional optical character recognition solutions demonstrates the developed system’s significant 
superiority: an average increase in classification accuracy of 14.8%, reaching 31.3% for low-quality images. A key 
factor in the system’s effectiveness is the normalization module, which provides correction of up to 96% of optical 
character recognition errors under simple conditions and up to 78% under complex conditions, successfully addressing 
typical recognition issues, including mixed Cyrillic and Latin characters, erroneous merging, and character breaks.
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Введение
В условиях современного промыш-

ленного производства существует потреб-
ность в повышении точности и автомати-
зации процессов учёта и отслеживания 
движения заготовок, полуфабрикатов 
и деталей на всех этапах жизненного цик-
ла продукции. Перспективным направ-
лением в области визуальной иденти-
фикации выступает применение систем 
технического зрения (СТЗ), обеспечива-
ющих автоматизированный сбор, анализ 
визуальных данных и принятие решений. 
В машиностроении СТЗ применяются 
для решения широкого круга задач, вклю-
чая контроль геометрии деталей, выявле-
ние дефектов поверхности, а также рас-
познавание маркировок. 

В основу подхода заложена возможность 
его итеративной корректировки техниче-
ского зрения и дообучения по накапливае-
мым данным. Реализация данного подхода 
обеспечит не только возрастание метрики 
точности в ходе эксплуатации, но и адап-
тацию системы к новым типам маркиро-
вок и изменяющимся условиям функцио-
нирования. Разработка эффективной СТЗ 
для распознавания маркировок сопряжена 
с рядом неточностей на аппаратном и про-
граммном уровнях. Таким образом, созда-
ние надёжной СТЗ требует комплексного 
подхода, интегрирующего оптимизацию ап-
паратной конфигурации и совершенствова-
ние алгоритмического обеспечения для об-
работки изображений.

Цель исследования  – автоматизация 
процесса идентификации заготовок по бук-
венно-цифровым обозначениям, нанесён-
ным на их поверхность, с последующей 
классификацией материалов по базе дан-
ных марок стали. 

Материалы и методы исследования
Предлагаемое решение разработано 

на базе университета НИУ БелГУ и направ-
лено на изучение процесса идентификации 
заготовок в машиностроительном произ-
водстве с внедрением СТЗ для распозна-
вания маркировок на заготовках в маши-
ностроении. Для решения поставленных 
исследовательских задач был разработан 
и реализован комплекс взаимосвязанных 
функциональных модулей, образующих 
последовательность этапов обработки дан-
ных. Основу СТЗ составляет модуль авто-
матизированного захвата изображений, обе-
спечивающий получение исходных данных 
в виде изображений маркированных загото-
вок. Полученные изображения поступают 

в модуль цифровой предобработки, в рам-
ках которого осуществляется подавление 
шумов, повышение контрастности целевых 
областей и коррекция геометрических ис-
кажений методами перспективной транс-
формации [1]. Ключевым этапом является 
модуль распознавания текста, реализован-
ный на базе алгоритмов оптического рас-
познавания символов (OCR). Для миними-
зации ошибок, присущих OCR-системам, 
распознанный текст подвергается процеду-
ре нормализации, включающей коррекцию 
типичных опечаток и синтаксических ис-
кажений [2; 3]. Верификация полученных 
данных осуществляется модулем сопостав-
ления с эталонной базой данных марок ста-
ли. Результатом работы данной подсистемы 
является классификация заготовки, которая 
передается на информационный выходной 
интерфейс [4].

Архитектура системы гарантирует 
функционирование в режиме реального 
времени, что обеспечивает обработку по-
тока данных в условиях высокоскоростно-
го производственного цикла. Интеграция 
указанных модулей в единый конвейер 
позволяет достичь поставленной цели 
по созданию надежной системы иденти-
фикации [5; 6].

Результаты исследования  
и их обсуждение

В ходе исследования была разработа-
на и реализована модульная архитектура 
системы автоматизированной идентифика-
ции изделий по маркам стали, основанная 
на последовательном применении алгорит-
мов компьютерного зрения и обработки 
естественного языка. На рисунке 1 пред-
ставлен алгоритм последовательности об-
работки данных в системе.

Обработка данных представляет собой 
последовательный конвейер: бинаризо-
ванное изображение поступает в Tesseract 
OCR для извлечения текста. После очистки 
и нормализации (исправление гомоглифов) 
текст сопоставляется с базой марок ста-
ли алгоритмом нечеткого поиска. Система 
индицирует либо найденную марку, либо 
ошибку классификации.

Алгоритм предобработки изображе-
ний реализуется в виде последователь-
ности следующих шагов. На первом шаге 
осуществляется преобразование цветного 
изображения в полутоновое. Данная про-
цедура является стандартной для систем 
компьютерного зрения и направлена на со-
кращение объема обрабатываемых данных 
за счет элиминации избыточной цветовой 
информации [7; 8]. 
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Рис. 1. Алгоритм последовательности обработки данных в системе  
Источник: составлено авторами

Интенсивность каждого пикселя вычис-
ляется как взвешенная сумма значений кана-
лов красного (R), зеленого (G) и синего (B):
I = 0.2989 × R + 0.5870 × G + 0.1140 × B, (1)
где I – интенсивность пикселя в полутоно-
вом представлении. 

Второй шаг обработки заключается 
в повышении контрастности изображения. 
Для решения проблемы недостаточного 
контраста, присущего производственной 
маркировке, в системе реализовано ли-
нейное растяжение гистограммы яркости 
с помощью функции cv2.convertScaleAbs 
(OpenCV), что усиливает различия между 
фоном и символами.

Третий шаг устраняет производствен-
ные шумы (например, от недостаточного 
освещения), которые снижают точность рас-
познавания. Для их минимизации использу-
ется гауссовский фильтр (cv2.GaussianBlur), 

обеспечивающий подавление высокоча-
стотных помех при сохранении целостно-
сти полезных контуров.

На этапе бинаризации изображение пре-
образуется в бинарное представление по-
средством пороговой обработки. Точность 
сегментации символов, определяемая кор-
ректностью выбора порога, обеспечивается 
применением функций cv2.threshold и адап-
тивного метода cv2.ADAPTIVE_THRESH_
MEAN_C из библиотеки OpenCV [9-11].

Пятый шаг включает коррекцию гео-
метрических искажений, вызванных не-
оптимальной ориентацией объекта, и нор-
мализацию изображения. Процесс предпо-
лагает детектирование контуров символов, 
оценку их пространственных характери-
стик и углов ориентации с последующим 
применением линейных или перспектив-
ных преобразований для восстановле-
ния геометрии.
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Рис. 2. Предобработка изображений  
Источник: составлено авторами

Шестой этап включает сегментацию 
символов методом анализа связных компо-
нентов. На бинаризированном изображении 
проводится кластеризация смежных пик-
селей с последующей верификацией полу-
ченных областей по заданным параметрам 
(размер, форма). Области, соответствующие 
критериям, идентифицируются как симво-
лы, остальные удаляются как шум.

Таким образом, предложенный алгоритм 
предобработки изображения интегрирует 
ключевые методы обработки изображений, 
обеспечивающие надежную подготовку 
данных для последующего распознавания 
символов в системах технического зрения, 
результат показан на рисунке 2.

Для обеспечения максимального каче-
ства оптического распознавания символов 
(OCR) в условиях промышленной эксплуа-
тации была выбрана конфигурация OEM 3, 
использующая механизм LSTM OCR и осно-
ванная на архитектуре сверточных нейрон-
ных сетей. Выбор данной конфигурации об-
условлен её повышенной устойчивостью к  ви-
зуальным искажениям и способностью к адап-
тивному анализу сложных паттернов [12].

Для сегментации текстовых областей 
был применён режим сегментации страниц 
(Page Segmentation Mode, PSM) с параме-
тром 6, ориентированный на распознавание 
единого блока текста. Указанный режим 
является оптимальным для обработки мар-
кировочных обозначений, которые обычно 
представлены в виде изолированных строк, 
состоящих из буквенно-цифровых симво-
лов. Выходные данные в производственной 
среде неизбежно подвержены ошибкам рас-
познавания, поэтому основными факторами, 
детерминирующими возникновение данных 
ошибок, выступают: низкое разрешение 
и недостаточная контрастность исходных 
изображений, частичная деградация конту-
ров символов, применение нестандартных 
типографских шрифтов, а также семиотиче-
ская близость графем различных алфавитов.

Для минимизации указанных ошибок 
распознавания в рамках СТЗ был разрабо-
тан и интегрирован специализированный 
модуль постобработки, выполняющий нор-
мализацию текстовых данных. Основная 

функция данного модуля заключается в ана-
лизе выходных данных первичного распоз-
навания (OCR) и коррекции наиболее ре-
куррентных ошибок перед передачей текста 
на последующие этапы обработки, в част-
ности в модуль классификации.

Алгоритм нормализации реализует 
трехшаговую обработку текстовых данных: 

1) унификация регистра (приведение сим-
волов к верхнему регистру); 

2)  элиминация избыточных символов 
(удаление пробельных и управляющих 
символов); 

3)  корректировка гомоглифов (замена 
символов латинского алфавита на кирилли-
ческие аналоги).

Нормализованные данные сопостав-
ляются с эталонными значениями из базы 
данных марок стали. Для минимизации 
ошибок, обусловленных артефактами об-
работки изображений (зернистость, дегра-
дация символов), интегрирован алгоритм 
нечеткого сравнения на основе алгоритма 
Левенштейна (библиотека difflib, Python). 
Данный подход обеспечивает идентифи-
кацию соответствий в условиях орфогра-
фических вариаций и незначительных 
расхождений. Ключевой элемент СТЗ  – 
модуль классификации, осуществляющий 
сопоставление распознанных маркировок 
стали с эталонными значениями из базы 
данных. Формирование базы данных осно-
вано на анализе наиболее распространен-
ных марок, применяемых на производстве, 
что обеспечивает оптимальный баланс 
между компактностью и репрезентативно-
стью охвата материалов [13-15].

Основу программной реализации со-
ставили следующие компоненты: OpenCV 
для предобработки изображений, Tesser-
act OCR с конфигурацией OEM 3  и  PSM 
6 для распознавания строкового текста, 
а также Pytesseract для интеграции OCR-
функционала в алгоритмы системы. Кросс-
платформенность OpenCV и поддержка 
Python обеспечили эффективную разработ-
ку, пока комбинация Tesseract и Pytesseract 
позволила достичь оптимального баланса 
между точностью распознавания и гибко-
стью интеграции с внешними системами.
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Рис. 3. Изображение с маркировкой: а) группа А; б) группа Б; в) группа С  
Источник: составлено авторами

Рис. 4. Вывод классификации: а) группа А; б) группа Б; в) группа С 
Источник: составлено авторами

Таблица 1
Результаты проведения испытаний

Показатели Значения
А Б С

Точность распознавания текста 98,7% 94,5% 82,3%
Успешность нормализации 99,3% 97,1% 89,7%
Правильность классификации 98,7% 94,0% 83,5%
Среднее время обработки 0,23 секунды 0,26 секунды 0,31 секунды

Примечание: составлено авторами на основе полученных данных в ходе исследования.

Экспериментальные испытания прово-
дили в условиях, максимально приближён-
ных к промышленной среде. Наборы изо-
бражений (A, B, C) обрабатывались по оче-
реди для последовательной оценки влияния 
степени сложности на результативность 
работы алгоритмов (табл. 1). Для каждого 
набора замеряли следующие показатели: 
доля успешно распознанного текста; число 
ошибок автоматического распознавания; 
результативность нормализации; точность 
классификации и длительность обработки 
одного изображения. Примеры изображе-
ний представлены на рисунках 3 и 4.

Результаты испытаний системы для на-
бора A, включающего изображения, полу-
ченные в упрощённых условиях с отчёт-

ливыми, хорошо читаемыми символами, 
ровным освещением и незначительными 
помехами на поверхности, продемонстри-
ровали практически корректную работу. 
Единичные ошибки, связанные со смеше-
нием латинских и кириллических симво-
лов, таких как «Х» и «X», «0» и «О», были 
успешно устранены модулем нормализа-
ции. Это подтвердило, что алгоритмы нор-
мализации полностью компенсируют не-
точности OCR.

Испытания в усложнённых услови-
ях (набор B) подтвердили сохранение си-
стемой высокой точности распознавания 
при наличии помех: загрязнений, потёрто-
стей, неравномерного освещения и мелких 
повреждений знаков.
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Таблица 2
Сравнительная эффективность

Показатель Стандартный OCR Разработанная система
Точность классификации 
(средняя) 77,3% 92,1%

Время обработки (среднее) 0,19 сек. 0,27 сек.
Устойчивость к ошибкам OCR Низкая Высокая

Примечание: составлено авторами на основе полученных данных в ходе исследования.

Типичные ошибки распознавания сле-
дующие: слияние символов, частичные 
пропуски и некорректное распознавание 
графем «Ф»/«З». Алгоритмы коррекции 
текста успешно компенсировали большин-
ство ошибок, демонстрируя устойчивость 
к умеренным повреждениям. Время обра-
ботки соответствовало требованиям про-
мышленной эксплуатации, что подтверж-
дает практическую применимость системы 
в неидеальных условиях.

Результаты испытаний на наборе C с  
экстремальными условиями съёмки (значи-
тельные загрязнения, повреждения марки-
ровок, деформации знаков, угловые искаже-
ния) показали сохранение системой удов-
летворительной точности, превосходящей 
типовые OCR-решения. Несмотря на про-
пуски символов в зонах сильных поврежде-
ний и ошибки распознавания соединённых/
размытых графем, обеспечена корректная 
классификация свыше 80% заготовок. Ал-
горитм нечёткого сравнения (difflib) эффек-
тивно компенсировал частично распознан-
ные маркировки. Сбои отмечались лишь 
при полном уничтожении знаков, исключа-
ющем визуальную идентификацию. Произ-
водительность системы оставалась в преде-
лах, допустимых для промышленной экс-
плуатации, подтвердив устойчивость алго-
ритмов к экстремальным условиям.

Результаты, полученные для набора А, 
подтвердили, что система успешно справ-
ляется с обработкой изображений, получен-
ных в типовых производственных условиях 
с незначительными помехами. Положитель-
ные результаты для набора B продемон-
стрировали стойкость алгоритмов к незна-
чительным загрязнениям и повреждениям, 
регулярно возникающим в реальной экс-
плуатации. Несмотря на существенные за-
труднения, связанные с набором C, система 
обеспечила точность, превышающую за-
данный порог (80%), что подтверждает её 
пригодность для эксплуатации в условиях 
сильной деградации качества изображений. 
Средняя длительность обработки одного 
изображения для всех наборов составила 
0,27 секунды. Даже в наиболее сложных ус-

ловиях (набор C) время обработки осталось 
в пределах 0,31 секунды, что полностью со-
ответствует нормативам обработки в реаль-
ном времени.

Для проведения сравнительных испы-
таний разработанной системы был выпол-
нен сопоставительный анализ с примене-
нием типового инструмента распознавания 
Tesseract, функционирующего в исходной 
конфигурации без проведения предвари-
тельной подготовки и доводки изображе-
ний (табл. 2). Результаты контроля точно-
сти показали последовательное снижение 
этого показателя у эталонного решения 
по мере усложнения условий: в группе A 
точность составила 92,5%, в группе B  – 
78,4%, а в группе C – лишь 61,0%. Данные 
подтверждают, что стандартные системы 
удовлетворительно справляются с изобра-
жениями хорошего качества, но их эффек-
тивность резко падает при ухудшении усло-
вий, поскольку они не способны компенси-
ровать ошибки распознавания, характерные 
для смешанных алфавитов и повреждён-
ных символов.

Существенно повысить надёжность раз-
работанной системы позволило добавление 
блока нормализации, который успешно ис-
правляет характерные ошибки автоматиче-
ского распознавания, такие как неправиль-
ное соединение или разделение знаков. Ре-
зультативность этого блока была измерена: 
в наборе A нормализация устранила 96% 
ошибок распознавания, в наборе B – 92%, 
а в усложнённых условиях набора C – 78% 
ошибок. Это подтверждает его существен-
ную роль в поддержании стабильного функ-
ционирования системы при ухудшении ка-
чества входных данных.

Пусть время обработки немного уве-
личилось по сравнению с базовым OCR, 
но прирост точности на 16% компенсировал 
этот эффект.

Заключение
Проведенное исследование подтвер-

дило эффективность разработанной авто-
матизированной СТЗ для распознавания 
маркировок на металлических заготовках 
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в условиях машиностроительного произ-
водства. Реализованный комплекс алгорит-
мов предобработки изображений, включа-
ющий коррекцию контрастности, гауссову 
фильтрацию, адаптивную бинаризацию 
и геометрическую нормализацию, позво-
лил достичь высокой точности распозна-
вания даже в сложных производственных 
условиях. Экспериментальные результаты 
продемонстрировали устойчивую работу 
системы по всем тестовым группам: без по-
мех достигнута точность 98,7%, в условиях 
умеренных помех  – 94,5%, а при экстре-
мальных повреждениях маркировок систе-
ма сохранила показатель 82,3%. Время об-
работки не превысило 0,31 секунды, что со-
ответствует требованиям промышленных 
процессов настоящего времени.

Сравнительный анализ с традиционны-
ми OCR-решениями показал существенное 
превосходство разработанной системы  – 
прирост точности классификации составил 
в среднем 14,8%, достигая 31,3% для изо-
бражений наихудшего качества. Ключевым 
фактором эффективности является модуль 
нормализации, обеспечивающий коррек-
цию до 96% OCR-ошибок. Модульная архи-
тектура системы обеспечивает возможность 
ее адаптации к изменяющимся производ-
ственным требованиям, что делает пред-
ложенное решение перспективным для вне-
дрения на современных машиностроитель-
ных предприятиях.
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