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Квантовые технологии и инструменты искусственного интеллекта обладают огромным потенци-
алом для применения во многих отраслях промышленности, обещая повышение эффективности, точ-
ности и безопасности, а также расширение возможностей прогнозирования и адаптивного управления 
сложными процессами. Исследователи полагают, что преимущества этих инновационных техноло-
гий могут идеально подойти для создания беспилотных систем. Цель статьи заключается в изучении 
особенностей и перспектив применения нейросетевых и квантовых технологий в технологических 
процессах производства беспилотных систем. Методы исследования: анализ и синтез, систематиза-
ция данных по сферам применения, моделирование с использованием физически информированных 
нейронных сетей, применение квантовых алгоритмов для оптимизации проектирования и производ-
ства, оценка эффективности и надежности автономных систем. В статье детализированы сферы и по-
тенциал применения нейросетевых и квантовых технологий для производства автономных платформ. 
Отдельное внимание уделено физически информированным нейронным сетям для идентификации не-
линейных моделей систем в процессе проектирования беспилотных аппаратов. Апробация и преиму-
щества предложенной архитектуры проведены на примере параметрической оптимизации лонжерона 
крыла БПЛА. Проведенный сравнительный анализ показывает, что физически информированные ней-
ронные сети, интегрирующие физические законы в функцию потерь, способны на порядок сократить 
вычислительное время по сравнению с прямым численным моделированием. Также акцентировано 
внимание на повышенной сходимости, устойчивости к переобучению и стабильных результатах про-
гнозирования, которые позволяют получить квантовые алгоритмы в задачах производства и масшта-
бирования беспилотников.
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Quantum technologies and artificial intelligence tools have enormous potential for application in many 
industries, promising increased efficiency, accuracy, and safety, as well as expanded capabilities for forecasting 
and adaptive management of complex processes. Researchers believe that the advantages of these innovative 
technologies may be ideal for the creation of unmanned systems. The purpose of this article is to study the 
features and prospects of applying neural network and quantum technologies in the technological processes 
of unmanned system production. Research methods: analysis and synthesis, systematisation of data by area 
of application, modelling using physically informed neural networks, application of quantum algorithms to 
optimise design and production, evaluation of the efficiency and reliability of autonomous systems. The article 
details the areas and potential of neural network and quantum technologies for the production of autonomous 
platforms. Particular attention is paid to physically informed neural networks for identifying nonlinear system 
models in the design of unmanned aerial vehicles. The proposed architecture has been tested and its advantages 
demonstrated using the example of parametric optimisation of the UAV wing spar. A comparative analysis 
shows that physically informed neural networks, which integrate physical laws into the loss function, can 
reduce computing time by an order of magnitude compared to direct numerical simulation. Attention is also 
focused on increased convergence, resistance to overfitting, and stable prediction results, which make it 
possible to obtain quantum algorithms in the tasks of manufacturing and scaling unmanned aerial vehicles.
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Введение
За последнее десятилетие беспилотные 

системы достигли значительных успехов, 
в основном благодаря растущему спросу 
на интеллектуальную автономность, устой-
чивую адаптивность и контекстно-зависимое 
принятие решений. Сегодня эти системы на-
ходят свое применение в самых различных 
областях и сферах деятельности, напри-
мер таких, как автономное вождение, про-
мышленная логистика, космические миссии 
и точное земледелие. Ключевым требова-
нием для обеспечения производительности, 
надежности и безопасности беспилотных 
систем является точная характеристика их 
базовой динамики. В свою очередь, следует 
отметить, что достижение этой цели зависит 
от сочетания различных технологий, в том 
числе от решения особенно сложной задачи 
по разработке высоконадежных и безопас-
ных систем искусственного интеллекта [1]. 

Эти системы должны быть способны 
ориентироваться в сложных условиях ре-
ального мира – будь то автомобиль, движу-
щийся по загруженному городу, или самолет, 
совершающий посадку в неблагоприятных 
погодных условиях. Сложность заключа-
ется в том, чтобы обеспечить безупречную 
работу систем автономного вождения в лю-
бых условиях, что требует тщательного их 
тестирования на всех этапах производства 
с использованием наборов данных, точно от-
ражающих критические сценарии. Именно 
поэтому в последние годы научно-исследо-
вательские центры, лаборатории и ведущие 
производители все чаще обращают внима-

ние на квантовые вычисления и, в частности, 
на квантовый генеративный искусственный 
интеллект как на технологию, которая имеет 
все необходимые характеристики для реше-
ния этой проблемы. Уже сегодня эксперты 
считают, что преимущества квантовых под-
ходов могут идеально соответствовать по-
требностям создания систем автономного 
вождения и навигации. В отличие от клас-
сических, квантовые компьютеры способны 
обрабатывать огромные объемы данных и ге-
нерировать изображения с беспрецедентной 
детализацией и сложностью [2]. Эта способ-
ность открывает новые возможности созда-
ния точных симуляций критических тесто-
вых сценариев, что необходимо для развития 
автономных технологий.

На рис. 1 показаны экспертные прогно-
зы относительно того, в каких сферах моде-
лирования и производства беспилотных си-
стем нейросетевые и квантовые технологии 
способны оказать наибольший эффект.

Несмотря на то, что более широкое при-
менение и распространение квантовых ком-
пьютеров и интеллектуальных вычислитель-
ных методов в производстве может занять 
еще как минимум десятилетие, научно-экс-
пертному сообществу уже сегодня целесо-
образно предпринимать шаги для лучшего 
понимания этих технологий и их потенци-
альных применений в технологических про-
цессах выпуска беспилотных систем.

Таким образом, отмеченные обстоятель-
ства подтверждают актуальность, теорети-
ческую и практическую значимость темы 
данной статьи.

Рис. 1. Прогнозная динамика увеличения эффективности производства беспилотных систем  
с использованием нейросетевых и квантовых технологий (по сравнению с 2024 г., %) 

Примечание: составлено автором с использованием отчетов McKinsey & Company, Boston 
Consulting Group, DARPA, NVIDIA (The state of AI, Quantum computing’s P&L, AI in the Factory,  

Air Combat Evolution, DARPA, NVIDIA Omniverse, AI in Manufacturing)
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Перспективы применения различных 
архитектур нейронных сетей для повыше-
ния точности и эффективности решения 
кинематических уравнений и управления 
роботами-манипуляторами в процессе про-
изводства сложных технологических систем 
рассматривают в своих трудах П.А. Замятин, 
Р.М. Ростовцев, С.А. Солохин, П.Е. Хруста-
лев [3], Zhang Youchun, Zhang Gongyong [4], 
Vandana Dabass, S. Sangwan [5].

Возможности квантового генеративного 
искусственного интеллекта для решения за-
дачи разработки физической модели беспи-
лотника, который позволит оптимизировать 
входные данные LiDAR и обрабатывать рас-
стояния до препятствий, предупреждая тем 
самым столкновения и общую адаптивность, 
изучают М.Ф. Савельев, А.В. Обухов, Н.С. Ма-
лахова, Е.Г. Воробьев [6], М.Е. Иванов, Д. Ре-
шетников [7], Qifu Wang, Yuteng Guan [8].

Над усовершенствованием алгоритма 
на основе рекуррентной нейронной сети, 
который необходим для снижения вычис-
лительных требований, обычно связанных 
с моделированием динамики беспилотных 
систем, трудятся Д.А. Сергеев [9], Nihar 
Patel, Nakul Vasani [10], Chunbo Zhao, Huaran 
Yan [11]. Особое внимание уделено требо-
ваниям к видеопотоку при FPV-управлении 
беспилотными системами [12].

В то же время в существующих на се-
годняшний день публикациях освещены от-
нюдь не все аспекты интеграции квантовых 
вычислений и нейросетевых технологий 
в производственные процессы роботизиро-
ванных платформ. Так, например, нерешен-
ной остается проблема перевода дневных 
изображений дорог в ночные с сохранением 
контента, например, положения автомоби-
лей. Эта задача особенно сложна из-за ре-
сурсоемкости классических решений, кото-
рые часто дают нестабильные результаты. 
Отдельного внимания заслуживает вопрос 
преодоления трудностей, присущих кванто-
вому машинному обучению, таких как про-
блема «плато Баррена», решение которого, 
по мнению ученых, будет крайне полезно 
для более точного проектирования объектов 
автономной мобильности. 

Цель исследования – рассмотреть воз-
можности и особенности применения ней-
росетевых и квантовых технологий в техно-
логических процессах производства беспи-
лотных систем.

Материалы и методы исследования 
Включены анализ и синтез научных пу-

бликаций за 2022–2025 гг. в области при-
менения нейросетевых и квантовых техно-
логий в производстве беспилотных систем, 
систематизация данных международных от-

четов (McKinsey & Company, BCG, DARPA, 
NVIDIA) о динамике внедрения инноваци-
онных технологий. Методы исследования: 
анализ и синтез, систематизация данных 
по сферам применения, моделирование 
с использованием физически информиро-
ванных нейронных сетей, применение кван-
товых алгоритмов для оптимизации проек-
тирования и производства, оценка эффек-
тивности и надежности автономных систем.

Результаты исследования  
и их обсуждение

Интеграция квантовых вычислений, тех-
нологий искусственного интеллекта в сферу 
беспилотных систем продвигается стреми-
тельными темпами. Эти передовые иннова-
ции стали трансформирующей силой в ав-
тономных платформах, предоставляя более 
действенные методы моделирования и испы-
таний, управления и оптимизации, с которы-
ми классические приемы вычислений часто 
не справлялись. Междисциплинарные иссле-
дования изучают, каким образом квантовые 
технологии и нейронные сети могут улуч-
шить автономные системы, решая сложные 
задачи, такие как планирование траектории, 
координация нескольких агентов, объеди-
нение датчиков и оптимизация. Сочетание 
квантовых вычислений с нейронными сетя-
ми улучшает производительность моделей 
за счет использования свойств квантовой 
механики, таких как суперпозиция, связан-
ность и квантовый параллелизм [13].

На основе анализа имеющихся на се-
годняшний день публикаций и результатов 
исследований автором в табл. 1 системати-
зирована информация относительно сфер 
приложений и возможностей использова-
ния рассматриваемых технологий.

Рассмотрим некоторые примеры прило-
жения квантовых технологий и нейронных 
сетей в технологических процессах произ-
водства беспилотных систем.

Инжиниринг и проектирование
Инженерные симуляции имеют суще-

ственное значение для производства беспи-
лотных систем. Они необходимы для сокра-
щения затрат на проектирование и тестиро-
вание за счет уменьшения необходимости 
в физических прототипах и лабораториях, 
например, аэродинамических трубах в ав-
томобильной и аэрокосмической отраслях. 
Численные моделирования, особенно ос-
нованные на методе конечных элементов, 
имеют решающее значение для симуляции 
сложных процессов, таких как аэродинами-
ка, рабочая прочность, динамика конструк-
ций, аварийная безопасность и производ-
ственные вопросы [14].
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Таблица 1 
Сферы и возможности применения нейросетевых и квантовых технологий  

в процессах производства беспилотных систем 

Этап  
произ-
водства

Нейросетевые технологии Квантовые технологии

П
ро

ек
ти

ро
ва

-
ни

е 
и 

мо
де

ли
ро

-
ва

ни
е

−  оптимизация конструкции: нейросети 
могут анализировать тысячи вариантов 
дизайна для повышения аэродинамиче-
ской эффективности и снижения веса;
− прогнозирование поведения: симуляция 
поведения систем в различных условиях 
(ветер, осадки) для выявления и устране-
ния уязвимостей

−  создание новых материалов: квантовое 
моделирование позволяет исследовать но-
вые материалы с улучшенными свойствами 
(прочность, легкость);
−  оптимизация компоновки: квантовые ал-
горитмы могут находить наиболее эффек-
тивную комплектацию элементов на микро-
уровне, что улучшает производительность

Ра
зр

аб
от

ка
 с

и-
ст

ем
 н

ав
иг

ац
ии

 
и 

уп
ра

вл
ен

ия

− автономная навигация: нейросети обра-
батывают данные с сенсоров (камер, лида-
ров) для точного распознавания объектов 
и принятия решений в реальном времени;
− адаптивное управление: система может 
самостоятельно подстраивать траекторию 
полета под меняющиеся условия (напри-
мер, сильный ветер)

− квантовые сенсоры: использование кванто-
вых гироскопов и магнитометров для сверх-
точной навигации, не зависящей от GPS-
сигналов;
− оптимизация маршрута: квантовые алгорит-
мы могут мгновенно рассчитывать оптималь-
ные маршруты, учитывая огромное количество 
переменных (препятствия, погодные условия)

Ра
сп

оз
на

ва
ни

е 
и 

ан
ал

из
 д

ан
-

ны
х

−  компьютерное зрение: мгновенное рас-
познавание объектов, людей, животных, 
а также анализ местности для картогра-
фирования; 
− прогнозирование: анализ данных с  дат-
чиков для прогнозирования потенциаль-
ных угроз или неисправностей

−  улучшенная обработка сигналов: кванто
вые технологии могут обеспечить повы
шенную чувствительность сенсоров для об-
наружения скрытых объектов или сигналов; 
− защита информации: использование кван-
товой криптографии для защиты каналов 
связи и предотвращения перехвата данных 
с беспилотника

Ко
нт

ро
ль

 к
а-

че
ст

ва
 и

 б
ез

-
оп

ас
но

ст
ь −  прогнозирование поломок: нейросети 

анализируют данные телеметрии и  опре-
деляют вероятность отказа компонента;
−  автоматизированное тестирование: мо-
делирование тысяч сценариев в вирту-
альной среде для проверки надежности 
системы

− квантовые генераторы случайных чисел: обе-
спечение высокого уровня безопасности связи, 
что критически важно для защиты от взлома;
−  улучшенный контроль качества: исполь
зование квантовых сенсоров для обнаружения 
микроскопических дефектов в материалах, 
что повышает надежность аппарата

Примечание: составлена автором. 

Например, компания Bosch исследует 
подходы к моделированию электрических 
приводов беспилотных аппаратов на осно-
ве квантовых вычислений. AIRBUS изучает 
использование квантовых или гибридных 
квантово-классических подходов для вычис-
лительной гидродинамики с целью сокраще-
ния затрат, необходимых для анализа поведе-
ния воздушного потока вокруг беспилотника.

Особое значение в данной сфере име-
ют физически информированные нейрон-
ные сети, которые вводятся для интеграции 
физических законов, обычно описывае-
мых обыкновенными дифференциальными 
уравнениями (ОДУ), в глубокие нейронные 
сети (ГНС). Этот подход обучает ГНС в ре-
жиме контролируемого обучения для отсле-
живания и контроля заданных физических 
закономерностей, что позволяет автомати-
чески находить решения ОДУ на основе 
данных. Основная идея физически инфор-
мированной нейронной сети заключается 
в интеграции дифференциального уравне-

ния в функцию потерь, как показано на рис. 
2, что повышает надежность сети и облег-
чает точные аппроксимации даже в сцена-
риях с недостатком данных, что очень часто 
встречается в технологических процессах 
производства беспилотных систем. 

На рис. 2 условные обозначения:
− сплошные линии → это прямые при-

чинно-следственные зависимости: данные, 
предсказания или вычисленные величины 
передаются от одного блока к другому;

−  пунктирные линии → это обратные 
связи или адаптивные корректировки, дру-
гими словами, информация идет «назад» 
в сеть или в модуль коррекции, чтобы обно-
вить веса, параметры или динамику;

−  точечные линии → это слабые или  
вспомогательные связи, которые не уча-
ствуют напрямую в вычислительном про-
цессе, но обеспечивают дополнительную 
проверку или учет информации (например, 
сравнение предсказаний с измерениями 
или влияние доверия на функцию потерь).
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Параметризованные и нелинейные 
уравнения в частных производных имеют 
следующий общий вид: 

[ ] [ ]ˆ ˆ; 0 0,t y N y t Tλ∂ + = ∈ ,

где ŷ(t,x) представляет собой скрытое (неяв-
ное) решение или состояние динамической 
системы, а N[∙] обозначает нелинейный 
дифференциальный оператор, параметризо-
ванный λ. Определим l(t, x) как выражение 
в левой части уравнения, то есть: 

[ ]ˆ: ˆl y N y∂ + .
После этого продолжается моделирова-

ние ŷ(t,x) с помощью глубокой нейронной 
сети. В данном контексте ŷ служит выхо-
дом многослойной нейронной сети, обозна-
ченной lw(t), где ŷ = lw(t), пусть lw является 
функцией отображения, обученной глубо-
кой сетью с адаптивными весами w. Таким 
образом, ожидается, что нейронная сеть об-
учится решению заданного ОДУ как функ-
ции непрерывного времени t.

Используя автоматическое дифферен-
цирование и правило цепочки, можно вы-
вести нейронную сеть, представляющую 
ŷ(t,x). Предполагая автономную систему, 
нейронная сеть ŷ(t) обучается, тем самым 
оптимизируются ее общие параметры с па-
раметрами ŷ(t,x) и l(t,x). Цель – минимизи-
ровать функцию затрат среднеквадратичной 
ошибки (MSE).

ŷ lMSE MSE MSEγ= + ,

( )
ˆ ˆ

1
ˆ

2

,
ˆ 1

1 1 ˆ ˆ
y yN N

j j
y i i ref

i iy t

MSE y t y
N N= =

= −∑ ∑ ,

( )( )
ˆ ˆ

ˆ

2

1 1

1 1 ˆ
y yN N

k
l i

i iy l

MSE l y t
N N= =

= ∑ ∑ ,

где 0 ≤ γ ≤ 1 – гиперпараметр, который дол-
жен отражать степень уверенности в физи-
ческих ограничениях системы, Nt  – общее 
количество выборок обучающих данных, 
Nl – количество точек коллокации, а Nŷ – ко-
личество выходов, генерируемых нейрон-
ной сетью. Для каждого выхода i обознача-
ем прогноз сети как ŷi(∙). Имея пару данных 

,( )ˆj j
i reft y , где j индексирует пару, а ,ˆ j

i refy  яв-
ляется желаемым выходом, можно сравнить 
ее с прогнозом сети ŷi(∙).

Рассмотрим на конкретном примере пре-
имущества использования архитектуры фи-
зически информированной нейронной сети 
для проектирования и производства БПЛА. 
Для этого проведем сравнительный анализ 
трех подходов: прямое численное моделиро-
вание, суррогатное моделирование на основе 

данных (Data-Driven Surrogate), физически 
информированная нейронная сеть (PINN).

Итак, задача заключается в параметриче-
ской оптимизации лонжерона крыла БПЛА. 

Объект: лонжерон крыла БПЛА.
Параметр: толщина стенки лонжерона h.
Цель: минимизация массы m(h) при со-

блюдении ограничений по рабочей проч-
ности.

Ограничение: максимальные эквива-
лентные напряжения (по Мизесу) σmax при  
расчетной аэродинамической нагрузке Fload 
не должны превышать допустимого значе-
ния [σ] = 250 МПа.

Сценарий: для построения функции от-
клика σmax(h) и нахождения оптимального h* 
требуется выполнить 100 оценочных расчетов 
(итераций) в диапазоне h ∈ [2,0 мм, 12,0 мм].

Подход 1: прямое численное моделиро-
вание (МКЭ)

Данный подход является традиционным 
и базовым для верификации. Он заключа-
ется в решении уравнений теории упруго-
сти методом конечных элементов (МКЭ) 
для каждой итерации hi(i = 1…100).

Методология: для каждого значения hi 
выполняется полный цикл: регенерация 
геометрии, дискретизация (построение сет-
ки), решение системы линейных алгебраи-
ческих уравнений (СЛАУ) KU=F и посто-
бработка для нахождения σmax.

Вычислительная оценка:
−  средняя вычислительная трудоем-

кость одного полного расчета (включая ре-
генерацию сетки и решение) на доступном 
вычислительном кластере: 

Tfem = 45 мин;
−  суммарные вычислительные затраты 

на оптимизационный цикл: 
100 45total eval femT N T= × = ×  мин =  

= 4500 мин = 75 ч.
Ограничение: подход вычислительно за-

тратен и плохо масштабируется при увели-
чении числа параметров.

Подход 2: Суррогатное моделирование 
на основе данных (Data-Driven Surrogate)

Этот подход предполагает использова-
ние «чистой» нейронной сети (например, 
MLP – многослойный перцептрон) для ап-
проксимации функции отклика σmax ≈ f(h;w), 
где w – веса сети.

Методология: требуется двухэтапный 
процесс. 

1.  Этап «Offline» (генерация данных): 
создание репрезентативной обучающей вы-
борки. Для адекватной аппроксимации не-
линейной физики требуется Ndata точек, сге-
нерированных Подходом 1. Для обеспече-
ния робастности предположим Ndata = 2000.
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2. Этап «Online» (обучение и предсказа-
ние): обучение сети на выборке

 { }
1

,  dataN

j max j
h σ

=  
и последующее (предсказание) для 100 ис-
комых вариантов hj.

Вычислительная оценка:
− затраты на генерацию данных: 

Tdata = Ndata × Tfem = 2000×45 мин = 1500 ч;
− затраты на обучение сети: 

Tdata ≈ 1 ч (на GPU);
− затраты на предсказание: 

Tinfer < 1с.
Ограничение: 
суммарные затраты Ttotal ≈ 1501 ч. Под-

ход неэффективен для новых R&D задач, 
где отсутствует априорная база данных 
(data-scarce scenarios).

Подход 3: Физически информированная 
нейронная сеть (PINN)

Данный подход, описанный в статье, 
решает проблему дефицита данных, инте-
грируя физические законы (УЧП) непосред-
ственно в функцию потерь.

Методология: сеть uNN(x,y,z,h,w) аппрок-
симирует само поле перемещений u в за-
висимости не только от координат (x,y,z), 
но и от параметра h. 

Функция потерь Loss = Lossdata + Lossphys:
Lossdata: минимизирует ошибку на край-

не малом наборе Nu «якорных» точек (ре-
зультатов МКЭ-симуляций), u dataN N .

Lossphys: минимизирует остаток УЧП те-
ории упругости ( ) ( )NN NNl u u Fσ= ∇⋅ +  на  
Nl точках коллокации, распределенных по  
области Ω и ее границам. УЧП выступает 
в роли регуляризатора.

Вычислительная оценка: 
−  затраты на генерацию данных: пусть 

Nu = 10 опорных симуляций (на 10 % меньше 
данных, чем в Подходе 1, и на 99,5 % меньше, 
чем в Подходе 2). Tdata = 10×45 мин = 7,5 ч;

− затраты на обучение сети: Ttrain_pinn. Об-
учение PINN  – это нетривиальная задача 
оптимизации невыпуклой функции потерь, 
требующая тонкой настройки гиперпараме-
тров (включая γ). Оценим ее в 5 ч;

− затраты на предсказание: Tinfer < 1 с.
Ограничение: 
суммарные затраты Ttotal ≈ 12,5 ч. Слож-

ность процесса обучения и чувствитель-
ность к гиперпараметрам (спектральное сме-
щение, балансировка Loss). 

Сравнительная характеристика полу-
ченных результатов представлена в табл. 2.

Сравнительный анализ показывает, 
что в задачах параметрической оптимиза-
ции, характеризующихся дефицитом дан-
ных, физически информированные нейрон-
ные сети (PINN) демонстрируют значитель-
ное (в представленном примере  – в 6 раз) 
преимущество в вычислительных затра-
тах по сравнению с традиционными ме-
тодами прямого численного моделирова-
ния (75 ч vs 12,5 ч). В отличие от «чи-
стых» суррогатных моделей, требующих 
для обучения очень больших объемов апри-
орных данных (1501 ч), PINN эффектив-
но используют информацию, заложенную 
в самих дифференциальных уравнениях 
(УЧП), которые выступают в роли мощно-
го физического регуляризатора. Это позво-
ляет находить достоверные решения даже 
при минимальном объеме эмпирических 
или численных данных (Nu), что полностью 
соответствует целям сокращения затрат 
на проектирование и производство БПЛА.

Таблица 2 
Сводная таблица сравнительного анализа

Параметр Подход 1:  
прямой МКЭ

Подход 2:  
суррогат (Data-Driven)

Подход 3:  
PINN

Основной принцип Численное решение 
УЧП

Аппроксимация 
данных

Гибрид: аппроксимация + 
регуляризация УЧП

Потребность в данных 
(Ndata)

0 (для предсказания) Ndata ~ 2000 + 
(для обучения)

Nu  ~ 10 
(для калибровки)

«Знание» физики Явное (встроен 
в решатель)

Неявное (только 
из данных)

Явное 
(встроено в Lossphys)

Время «Offline» 
(подготовка) 0 1500 ч (сбор данных) 

+ 1 ч (обучение)
7,5 ч (сбор данных) + 5 ч 

(обучение)
Время «Online» (расчет 
100 вариантов) 75 ч < 1 с < 1 с

Общее время выполнения 75 ч ~1501 ч 12,5 ч
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Таблица 3 
Применение квантовых алгоритмов для решения задач оптимизации технических 

процессов в ходе производства беспилотных систем 

Алгоритм Математическая 
задача

Техническое применение  
в производстве беспилотных систем

Квантовый 
отжиг

Комбинаторная 
оптимизация

Оптимизация роботизированных сборочных линий: расчет 
идеальной последовательности операций для минимизации 
времени сборки. Проектирование печатных плат: размещение 
компонентов для максимальной эффективности и минимиза-
ции наводок

Алгоритм 
Гровера

Неструктуриро-
ванный поиск 
данных

Базы данных материалов: мгновенный поиск компонентов, 
соответствующих заданным техническим требованиям (проч-
ность, вес, электропроводимость). Тестирование программного 
обеспечения: быстрый поиск уязвимостей или ошибок в коде 
полетного контроллера

Квантовое 
моделирование

Моделирование 
многочастичных 
систем

Материаловедение: моделирование новых сплавов и компози-
тов для корпусов с целью предсказания их прочности, устало-
сти и теплопроводности на атомном уровне. Моделирование 
батарей: расчет химических реакций для разработки более эф-
фективных и легких аккумуляторов

Гибридные 
квантово-
классические 
алгоритмы

Оптимизация 
с ограничениями

Оптимизация маршрутов и логистики: расчет идеальных марш-
рутов поставок с учетом тысяч переменных, таких как пробки, 
вес груза и срочность. Управление производством: оптимиза-
ция графика смен и использования оборудования для максими-
зации выпуска продукции

Квантовые 
сенсоры 
(на основе  
кубитов)

Сверхточное 
измерение

Неразрушающий контроль: выявление микроскопических де-
фектов в материалах, сварных швах и электронике путем из-
мерения магнитных и гравитационных аномалий. Калибров-
ка: сверхточная калибровка гироскопов и акселерометров 
перед установкой.

Примечание: составлена автором на основе полученных данных в ходе исследования

Производство и масштабирование
Технологические процессы производ-

ства беспилотных систем часто включают 
большое количество переменных и огра-
ничений, которые необходимо учитывать. 
Классические алгоритмы, такие как ими-
тационный отжиг, позволяют найти только 
локальные оптимумы и предоставить не-
оптимальное решение [15]. Квантовые под-
ходы к оптимизации, такие как квантовый 
отжиг, адиабатические или гибридные алго-
ритмы (например, квантовый алгоритм при-
ближенной оптимизации), обещают решить 
проблемы с большими пространствами па-
раметров, предоставить более качествен-
ные решения и сократить время их поиска 
(табл. 3) [16].

Заключение
Активно развиваемые на сегодняшний 

день технологии искусственного интеллекта 
и квантовые вычисления заключают в себе 
большой потенциал повышения эффектив-
ности и точности технологических процес-
сов производства беспилотных систем. 

В рамках статьи описаны возможности 
использования метода машинного обуче-
ния на основе физических знаний, а имен-
но нейронных сетей на основе физических 
знаний, для идентификации нелинейных 
моделей систем в процессе проектирования 
автономных платформ, особенно в случа-
ях, когда реальные данные ввода-вывода 
ограничены. Показан потенциал физически 
информированных нейронных сетей в за-
мене сложной нелинейной динамики более 
простыми и вычислительно эффективны-
ми аппроксимациями.

Проведенный сравнительный анализ 
вычислительной эффективности для задачи 
параметрической оптимизации лонжеро-
на крыла БПЛА продемонстрировал зна-
чительное преимущество физически ин-
формированных нейронных сетей. Общие 
временные затраты на решение задачи 
(включая подготовку и расчет 100 вариан-
тов) для PINN составили 12,5 ч, в то время 
как для традиционного прямого моделиро-
вания методом конечных элементов (МКЭ) 
потребовалось ~75 ч. Это 6-кратное ускоре-
ние достигается за счет замены многократ-
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ных полных расчетов однократным обуче-
нием быстрой суррогатной модели.

Также в ходе исследования акцентиро-
вано внимание на повышенной сходимости, 
устойчивости к переобучению и стабиль-
ных результатах прогнозирования, которые 
могут быть достигнуты с помощью кванто-
вых алгоритмов в процессе производства 
беспилотных систем и его масштабирова-
ния. Это представляет собой ценный шаг 
вперед в области высокоточной оценки 
и оптимизации динамических параметров 
в сложных системах, требующих точного 
моделирования в реальном времени.
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