УДК 669.295:539.214

АНТИФРИКЦИОННЫЕ СВОЙСТВА ВЫСОКОЭНТРОПИЙНОГО ПОКРЫТИЯ TiNiZrCuCr

Юров В.М., Гученко С.А.

Карагандинский государственный университет им. Е.А. Букетова, Караганда, e-mail: exciton@list.ru

Высокоэнтропийные сплавы (ВЭС) – сплавы, которые содержат не менее 5 элементов, причём количество каждого из них не должно превышать 35 ат. % и не должно быть меньше 5 ат. %. Для проведения исследований изготавливались мишени TiNiZrCuCr брались микропорошки соответствующих металлов и смешивались в эквиатомных пропорциях. Затем приготовленная смесь порошков помещалась в мелющий стакан планетарной шаровой мельницы. Полученный гомогенизированный состав помещался в вакуумную термопечь и спекался в ней в течение трех часов. Дифракционный анализ показал микроструктуру с кристаллической решеткой в виде ОКЦ. Нанесение покрытий производилось на подготовленные подложки из стали марки AISI-201. Были измерены поверхностное натяжение и толщина поверхностного слоя покрытия. Было проведено сравнение его свойств с литыми пятиатомными высокоэнтропийными сплавами. Однако система TiNiZrCuCr имеет низкую плотность (5,8 г/см3) и в 3 раза более высокую твердость (2,9 ГПа) по сравнению с остальными ВЭСами. Для сравнения, никелевый суперсплав 718 обладает плотностью $\rho = 8,19$ г·см³ при твердости равной 3,6 ГПа. Измерения показали, что коэффициенты трения покрытия TiNiZrCuCr сравнимы с трением слоистых кристаллов. Высокоэнтропийные покрытия TiNiZrCuCr оказываются антифрикционными, что со всей очевидностью приводит к экономии энергоресурсов. Анализ показал, что толщина поверхностного слоя d(I) d-элементов не превышает < 3 нм, а у лантаноидов больше чем > 4 нм, что и не приводит к формированию высокоэнтропийных сплавов. Возможно, это и есть универсальный параметр.

Ключевые слова: высокоэнтропийные сплавы, трение, поверхность, толщина поверхностного слоя, поверхностная энергия

ANTIFRICTIONAL PROPERTIES OF HIGH ENTROPY COATING TiNiZrCuCr Yurov V.M., Guchenko S.A.

Karaganda State University of E.A. Buketov, Karaganda, e-mail: exciton@list.ru

High entropy alloys (HEA) – alloys that contain at least 5 elements, and the amount of each of them should not exceed 35 at. % And should not be less than 5 at. %. To prepare the TiNiZrCuCr target, micropowders of the corresponding metals were taken and mixed in equiatomic proportions. Then the prepared mixture of powders was placed in a grinding cup of a planetary ball mill. The resulting homogenized composition was placed in a vacuum thermal furnace and sintered in it for 3 hours. Diffraction analysis showed the microstructure of OCK. Coating was carried out on prepared substrates made of AISI-201 steel. The surface tension and thickness of the surface layer of the coating were measured. A comparison was made of its properties with cast five-atom high-entropy alloys. However, our TiNiZrCuCr system has a low density (5.8 g/cm³) and 3 times higher hardness (2.9 GPa) compared to other wind farms. For comparison, the 718 nickel superalloy has a density $\rho = 8.19$ g·cm⁻³ with a hardness of 3.6 GPa. The measurements showed that the friction coefficients of the TiNiZrCuCr coating are comparable to the friction of layered crystals. High-entropy TiNiZrCuCr coatings turn out to be anti-friction, which most obviously leads to energy savings. The analysis showed that the thickness of the surface layer of d(I) d-elements does not exceed < 3 nm, and for lanthanides more than > 4 nm, which does not lead to the formation of highly entropic alloys. Perhaps this is a universal parameter.

Keywords: highly entropic alloy, friction, surface, surface layer thickness, surface energy

Примерно в 2004 г. возникли новые металлические объекты – высокоэнтропийные сплавы (ВЭС) [1]. Это сплавы представляют собой твердые растворы, отличительной особенностью которых является эквиатомное содержание элементов (не менее 5). Количество элементов сплава лежит в диапазоне от 5 до 35 ат. %. Для подобного типа сплавов характерно большое значение энтропии смещения S_{mix}. Примерами ВЭСов обычно служат многоэлементные сплавы, находящиеся в равной атомной пропорции. По своим свойствам они значительно отличаются от интерметаллидов.

Для использования в авиации и в космонавтике нужны металлические конструкции, обладающие низкой плотностью, высокой прочностью и жаростойкостью. Этим требованиям в большинстве случаев отвечают тугоплавкие металлы, имеющие приличные температуры плавления. Они также могут обладать относительно малой плотностью. Впервые такими ВЭСами стали сплавы NbTiVZr, NbTiV₂Zr, CrNbTiZr и CrNbTiVZr [2–4].

Приведенные в работе [4] такие данные свидетельствуют о том, что сплав CrNbTiVZr, синтезированный на основе тугоплавких металлов, обладает значительной прочностью при высоких температурах. У него наблюдается невысокая плотность. В этом плане он значительно превосходит никелевые суперсплавы, так активно используемые в авиационной промышленности. В настоящей работе излагается метод синтеза TiNiZrCuCr и его сравнение с другими ВЭСами, привлекая работы [5, 6] помимо [3, 4]. Определяется коэффициент трения покрытия и его антифрикционность. Кроме этого используются методы работы [7] для полного анализа данных.

Материалы и методы исследования

Для проведения исследований изготавливались мишени TiNiZrCuCr брались микропорошки соответствующих металлов и смешивались в эквиатомных пропорциях. Затем приготовленная смесь порошков помещалась в мелющий стакан планетарной шаровой мельницы, изготовленный из карбида вольфрама, и добавлялись мелющие тела (шары диаметром 5–10 мм), также изготовленные из карбида вольфрама, масса которых была равна 10 массам смеси порошков. После загруженный стакан наполнялся бензином «Галоша», плотно закрывалась крышка и включалась планетарная шаровая мельница (скорость вращения составляла 500 об/мин., время работы 5 ч.).

Полученный гомогенизированный состав затем сушился в вакууме и при помощи прессформы пресовался в плоский диск диаметром 100 мм и толщиной в 5 мм. Далее диск помещался в вакуумную термопечь и спекался в ней в течение 3 ч. Таким образом, изготовленная мишень TiNiZrCuCr использовалась для дальнейшего магнетронного нанесения покрытий на установке HHB 6. Дифракционный анализ показал микроструктуру с кристаллической решеткой в виде ОКЦ. Нанесение покрытий производилось на подготовленные подложки из стали марки AISI-201. Емкость под вакуумом доводилась до давления 3 мПа. Потом запускался аргон и включался ПИНК. Давление снижалось до 1 Па. На деталь подавался потенциал смешения в размере около 1000 В и в течение 10 мин производилась очистка и нагрев поверхности подложки. После давление аргона понижали до 0,1 Па и включался магнетрон. Смещение на подложке уменьшалось до 150 В ток магнетрона поддерживался постоянным 3 А. Подложка располагалась в камере на расстоянии 15 см, время напыления составляло 1 ч.

Морфология покрытий была тщательно исследована на электронном микроскопе MIRA 3 в растровом режиме. Исследования проводились при ускоряющем напряжении 20 кВ и рабочем расстоянии около 15 мм. Рисунок показывает химический состав TiNiZrCuCr, ат. % в эквиатомных пропорциях (табл. 1) в аргоне и азоте. Исключение составляет Cu, но он попадает в диапазон > 5 ат. %.

Таблица 1
Количественный химический состав
TiNiZrCuCr, at. %

Элемент	Cr	Ni	Ti	Zr	Cu
Номинальный	20	20	20	20	20
В аргоне	23,2	21,2	19,9	17,1	6,8
В азоте	22,8	20,8	19,7	16,9	7,0

Для традиционных сплавов в системе TiNiZrCuCr, как правило, образуется много интерметаллидов, таких как никелиды титана, меди и хромиды титана. Но в сплаве TiNiZrCuCr они не образуются, и этот ВЭС состоит из твердого раствора с ОЦК-решеткой. Числа фаз в этой кристаллической решетке существенно отличается от равновесного значения, которое вытекает из правила фаз Гиббса.

Нами использовался микротвердомер HVS-1000А. Результаты измерений покрытий TiNiZrCuCr даны в табл. 2.

РФЭС ТіNiZrCuCr в аргоне (а) и в азоте (б)

Таблица 2

Микротвердость покрытия TiNiZrCuCr в среде аргона и азота

Микротвердость	1	2	3	4	5	6	7	8	Среднее
HV	839	909	864	842	967	753	821	902	886
аргон									
HV	897	899	899	863	879	887	966	962	888
азот									

MODERN HIGH TECHNOLOGIES № 10, 2019

Микротвердость покрытия TiNiZrCuCr в среде аргона и азота практически не изменилась. Это означает, что азот не вступает в состав покрытия.

Для определения толщины поверхностного слоя различных соединений нами использовалась размерная зависимость физического свойства J(r) [8]:

$$J(r) = J_0 \cdot \left(1 - \frac{D}{r}\right), r \gg D,$$

$$J(r) = J_0 \cdot \left(1 - \frac{D}{D+r}\right), r \le D.$$
(1)

Величина D определяется поверхностным натяжением σ соотношением [8]:

$$D = \frac{2\sigma \upsilon}{RT},$$
 (2)

где σ – натяжение поверхности твердого тела; υ – молярный объем; R – газовая константа; T – температура. В работе [8] показано, что выполняется соотношение

$$\sigma = 0, 7 \cdot 10^{-3} \cdot T_m, \tag{3}$$

где T_m – температура плавления твердого тела (К). Соотношение выполняется для всех металлов и для других соединений. Если его подставить в (2), то при $T = T_m$ получим

$$d(I) = 0,17 \cdot 10^{-3} \,\mathrm{v}. \tag{4}$$

Формула (4) определяет толщину слоя поверхности D(I) как фундаментальную величину – молярным (атомным) объемом элемента ($\upsilon = M/\rho$, M – молярная масс (г/моль), ρ – плотность ($\Gamma/см^3$)), который периодически изменяется в соответствие с таблицей Д.И. Менделеева. Воспользуемся уравнениями (1)–(4) и рассчитаем интересующие параметры ВЭСов (табл. 1).

Результаты исследования и их обсуждение

Предполагалось, что параметры (табл. 1) можно варьировать путем термической обработки [3, 4]. Разработанная нами система TiNiZrCuCr может открыть возможности создания нового типа сплавов, для использования в области высоких температур и неплохим упрочнением. В конце концов перспективными могут быть и трибологические исследования в разного рода трибосопряжениях. Однако наша система TiNiZrСиСг судя по табл. 3 имеет низкую плотность (5,8 г/см³) и в 3 раза более высокую твердость (9,6 ГПа) по сравнению с остальными ВЭСами. Кстати, никелевый сплав типа 718 имеет плотность $\rho = 8,19$ г·см⁻³ и твердость порядка 3,6 ГПа.

Коэффициенты трения измерялись на разработанной нами установке [9]. В статье [9] на основе статистической термодинамики для определения коэффициента трения нами получено

$$k_{\rm rp} = {\rm const} \cdot T \cdot \frac{W}{\Delta G^0} \cdot \overline{N}, \qquad (5)$$

где W – энергия разрушения, T – температура, ΔG^0 – энергия Гиббса, N – число пропорциональное числу дефектов, const – постоянная.

Энергия Гиббса выражается следующим образом:

$$G^0 = H - TS + PV, \tag{6}$$

где H – энтальпия; T – температура; S – энтропия; V – объем.

Изменение энергии Гиббса в общем случае равно

$$\Delta G^0 = \Delta H - T\Delta S + P\Delta V + V\Delta P. \tag{7}$$

Формула (6) показывает, что химические реакции могут протекать самопроизвольно в том случае, если величины ΔH и $T\Delta S$ соотносятся определенным образом [5].

Четыре параметра составляют основу энтропии смешения, которые определяются как конфигурационная, $S_{\text{конф}}$, колебательная, S_{v} , магнитная, S_{m} , электронная, S_{e} [6].

Следовательно, энтропия смешения:

$$\Delta S_{\rm cmeili} = \Delta S_{\rm Koh\phi} + \Delta S_{\rm v} + \Delta S_m + \Delta S_e. \quad (8)$$

Согласно работе [1] для ВЭСов конфигурационная энтропия смешения больше всех трех составляющих: колебательной, магнитной и электронной энтропий. Это справедливо для многокомпонентных сплавов, содержащих 5 и более атомных элементов. В этом случае увеличение числа элементов приводит к снижению свободной энергии.

Таблица 3

ВЭС	T _m , K	σ _m , Дж/м²	Твердость, МПа	Плотность, г/см ³	d(I), нм
TiNiZrCuCr	1852	1,296	9590	5,8	9,2
CoCrCuFeNi	1754	1,228	4363	6,23	7,9
CrNbTiVZr	2220	1,554	4125	6,57	8,7
AlCrCoFeNi	1673	1,171	4551	7,83	5,5
AlCoCrFeNi ₂	2019	1,413	3874	7,44	7,1
TaNbHfZrTi	2452	1,716	3811	9,94	10,2
VNbMoTaW	2956	2,069	4112	12,36	8,3

Поверхностная энергия о_т и толщина поверхностного слоя d(I)

Примечание. Курсивом выделен наш образец.

Расчетные формулы параметров представлены в диссертации [10]:

- изменение энтропии смешения:

$$\Delta S_{\rm cmeili} = -R \sum c_i \ln c_i , \qquad (9)$$

где R – газовая постоянная, c_i – концентрация (ат. %) *i*-го элемента в сплаве;

- изменение энтальпии смешения:

$$\Delta H_{\rm cmenn} = \sum 4\Omega_{ij}c_ic_j. \tag{10}$$

Зависимость (5) должна наблюдаться и от концентрации числа электронов $\overline{N}: k \sim \overline{N}$. Такой зависимости нами не обнаружено, но можно поступить по-иному. Как показано в работе [11], то если к существующему сплаву добавить некоторое число атомов базового d-элемента из таблицы Д.И. Менделеева, то они будут влиять на параметр кристаллической решетки и конечно на такие параметры, как твердость и модуль упругости (и электрические характеристики).

Коэффициенты трения табл. 4 TiNiZrCuCr сравнивались с известными ВЭСами и слоистыми кристаллами из работы [12]. Из табл. 4 следует, что коэффициенты трения покрытия TiNiZrCuCr сравнимы с трением слоистых кристаллов. Высокоэнтропийные покрытия TiNiZrCuCr оказываются антифрикционными, что со всей очевидностью приводит к экономии энергоресурсов.

В начале статьи мы отметили, что в настоящее время не существует универсального параметра, предсказывающего структуру высокоэнтропийного сплава в любой многокомпонентной системе металлов.

Здесь мы покажем, что знание толщины поверхностного слоя может дать разгадку универсального параметра. В табл. 5 дана толщина поверхностного слоя d-элементов, которые являются базовыми для синтеза ВЭСов из табл. 3, а в табл. 6 даны толщины поверхностного слоя лантаноидов, которые не образуют ВЭСов.

Из табл. 5 и 6 видно, что толщина поверхностного слоя d(I) d-элементов не превышает < 3 нм, а у лантаноидов больше чем > 4 нм, что и не приводит к формированию высокоэнтропийных сплавов. Возможно, это и есть универсальный параметр.

Таблица 4

покрытие	по меди	1	по алюминию		
	коэффициент трения погрешность		коэффициент трения	погрешность	
TiNiZrCuCr	0,041	0,006	0,066	0,002	
AlCoCrCuFeNi	_	_	0,126	0,002	
CrMnSiCuFe-Al	0,256	0,002	0,219	0,002	
CrMnSiCuFeTi	0,365	0,003	0,426	0,002	
MoS ₂	0,05	-	-	-	
CdI ₂	0,06	_	-	_	
CoCl ₂	0,10				
PbI	0,28	_	_	_	

Коэффициенты трения по меди и алюминию

Таблица 5

Толщина поверхностного слоя d(I) d-элементов

Me	d(I), нм	Me	d(I), нм	Me	d(I), нм
Cr	1,2	Al	1,7	Со	
Ni	1,1	Fe	1,2	Мо	
Ti	1,8	Та	1,8	V	
Zr	2,4	Hf	2,3	W	
Cu	1,2	Nb	1,9	_	_

Таблица 6

Толщина поверхностного слоя d(I) лантаноидов

Me	d(I), нм	Me	d(I), нм	Me	d(I), нм
Ce	3,8	Eu	5,8	Er	5,5
Pr	4,2	Gd	5,3	Tm	5,2
Nd	4,5	Tb	5,3	Yb	4,6
Pm	4,4	Dy	5,3	Lu	5,7
Sm	4,4	Но	5,5	_	_

Заключение

Синтезированная нами система TiNiZrCuCr имеет низкую плотность (5,8 г/см³) и в 3 раза более высокую твердость (9,6 ГПа) по сравнению с остальными ВЭСами. Коэффициенты трения покрытия TiNiZrCuCr ($k \sim 0.04$) сравнимы с трением слоистых кристаллов. Высокоэнтропийные покрытия TiNiZrCuCr оказываются антифрикционными, что со всей очевидностью приводит к экономии энергоресурсов. Синтезированная нами система TiNiZrCuCr может быть востребована в аэрокосмической отрасли и других отраслях машиностроения. Возможно нами найден универсальный параметр, который «регулирует» формирование высокоэнтропийных сплавов по толщине поверхностного слоя d(I).

Работа выполнена по программе МОН РК. Гранты № 0118РК000063 и № Ф.0781.

Список литературы

1. Yeh J.W., Chen Y.L., Lin S.J., Lee P.H. High-entropy alloys – a new era of exploitation. Materials Science Forum. 2007. Vol. 560. P. 1–9. DOI: 10.4028/www.scientific.net/MSF.560.1.

2. Погребняк А.Д., Багдасарян А.А., Якущенко И.И., Береснев В.М. Структура и свойства высокоэнтропийных сплавов и нитридных покрытий на их основе // Успехи химии. 2014. Т. 83. № 11. С. 1027–1061.

3. Senkov O.N., Senkova S.V., Woodward C., Miracle D.B. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater. 2013. Vol. 61. № 5. P. 1545–1557. 4. Senkov O.N., Senkova S.V., Woodward C., Miracle D.B. Mechanical properties of low-density, refractory multiprincipal element alloys of the Cr-Nb-Ti-V-Zr system. Mater. Sci. Eng. A. 2013. Vol. 565. P. 51–62.

5. Ивченко М.В. Структура, фазовые превращения и свойства высокоэнтропийных эквиатомных металлических сплавов на основе AlCrFeCoNiCu: дис. ... канд. физ.мат. наук. Екатеринбург, 2015. 167 с.

6. Юрченко Н.Ю. Разработка и исследование высокоэнтропийных сплавов с высокой удельной прочностью на основе системы Al-Cr-Nb-Ti-V-Zr: дис. ... канд. техн. наук. Белгород, 2019. 187 с.

7. Юров В.М., Гученко С.А., Лауринас В.Ч. Оценка температуры плавления наночастиц некоторых оксидов металлов // Международный журнал прикладных и фундаментальных исследований. 2019. № 1. С. 38–43.

8. Юров В.М., Гученко С.А., Лауринас В.Ч. Толщина поверхностного слоя, поверхностная энергия и атомный объем элемента // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2018. № 10. С. 691–699. DOI: 10.26456/pcascnn/2018.10.691.

9. Юров В.М., Гученко С.А., Ибраев Н.Х. Определение коэффициента трения скольжения. // Международный журнал прикладных и фундаментальных исследований. 2010. № 8. С. 148.

10. Шайсултанов Д.Г. Структура и механические свойства высокоэнтропийных сплавов системы CoCrFeNiX (X=Mn, V, Mn и V, Al и Cu): дис. ... канд. тех. наук. Белгород, 2015. 142 с.

11. Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П. Новый класс материалов – высокоэнтропийные сплавы и покрытия // Вестник Тамбовского университета. Серия: естественные и технические науки. 2013. Т. 18. № 4–2. С. 1938–1940.

12. Богдан Т.В. Островные, цепочечные и слоистые мотивы в кристаллах простых веществ и бинарных соединений с ковалентными связями. М.: МГУ, 2015. 37 с.