скольких активных атомов хлора дает возможность получать новые, в том числе биологически активные, производные адамантана путем замещения хлора на различные группы атомов.

Структура полученного продукта была подтверждена методом хромато-масс-спектрометрии. Характерной особенностью масс-спектра синтезированного соединения является присутствие пика с m/z 133, соответствующего адамантану, замещенному в 1 и 3 положениях, что доказывает присутствие данного фрагмента в молекуле продукта реакции. Также на спектре присутствуют пики ионов с m/z 115, 91, 65, 41, соответствующие ионам фрагментации адамантанового каркаса и бензольного кольца. На спектре присутствует ион высокой интенсивности с массой 169, который соответствует хлорадамантильному фрагменту. Также на спектре присутствует пик иона, соответствующего молекулярному иону за вычетом CCl, группы (m/z 327). Также на спектре присутствует молекулярный ион (m/z 448) низкой интенсивности. Однако отсутствие либо наличие очень слабо выраженного молекулярного иона является характерной особенностью масс-спектров галогенсодержащих соединений.

Разработан эффективный метод получения 1-хлоро-3-(дихлоро (трихлорометил) фенил метил) адамантана с высоким выходом в относительно мягких условиях.

- Список литературы
 1. Г.М. Бутов, В.М. Мохов, С.В. Дьяконов // Известия Волгоград-
- . 1. М. Бутов, В.М. Мохов, С.В. Дьяконов // известия волгоград-ского государственного технического университета. 2011. Вып. 8, № 2 с. 27-28.

 2. Бутов Г.М., Дьяконов С.В., Мохов В.М.//Fluorine Notes (Фтор-ные заметки): on-line журнал. 2012. № 3 (май-июнь). С. http:// notes.fluorine1.ru/ public/2012/3 2012/ letters/ rusletter3.html.

 3. Г.М. Бутов, В.М. Мохов, С.В. Дьяконов // Известия Волгоград-
- ского государственного технического университета. 2012. Вып. 9,
- 4. Г.М. Бутов, В.М. Мохов, С.В. Дьяконов // Известия Волгоградского государственного технического университета. -2007. Вып. 4, №5 с. 30-34. 5. Г.М. Бутов, В.М. Мохов, С.В. Дьяконов. Пат. РФ №2301796.-
- 2007.- Бюл. № 18. 6. Утигалиев Р.С., Бутов Г.М., Дьяконов С.В. // Современные на-
- укоёмкие технологии. 2013. № 9. С. 85. 7. Лагутин П.А., Бутов Г.М., Дьяконов С.В. // Современные наукоёмкие технологии. 2013. № 9. С. 81-82.

ПРИМЕНЕНИЕ МЕТОДОВ ВИБРОДИАГНОСТИКИ ДЛЯ МОНИТОРИНГА ОБОРУДОВАНИЯ

Лукашевич Д.Н., Лапшина С.В

Волжский политехнический институт (филиал) Волгоградского государственного технического университета, Волжский, Россия

Отечественный и зарубежный опыт показывает, что внедрение средств диагностирования является одним из важнейших факторов повышения экономической эффективности использования оборудования в промышленности. Назначение диагностики — выявление и предупреждение отказов и неисправностей, поддержание эксплуатационных показателей в установленных пределах, прогнозирование состояния в целях полного использования доремонтного и межремонтного ресурса. Практически мгновенная реакция вибросигнала на изменение состояния оборудования является незаменимым качеством в аварийных ситуациях, когда определяющим фактором является скорость постановки диагноза и принятия решения. Традиционный планово-предупредительный метод обслуживания и ремонта оборудования и ремонта оборудования не обеспечивает эффективное поддержание оборудования в исправном состоянии в период эксплуатации. Основным принципом технического обслуживания ремонта, основанном на техническом диагностировании, является принцип предупреждения отказов в работе оборудования при условии обеспечения максимально возможной его наработки. Развитие дефекта в работающей машине с вращающимися частями определяется методами виброакустической диагностики. Работы по проведению вибромониторинга оборудования, позволяют отслеживать широкий спектр механических (дефекты деталей и узлов агрегатов) электрических (дефекты электрических узлов и деталей двигателей), аэродинамических и гидравлических (кавитация) дефектов диагностируемого оборудования, в процессе эксплуатации, а также выявлять дефекты при проведении ремонтных работ.

ПОЛУЧЕНИЕ ТВЁРДОГО КОАГУЛЯНТА НА ОСНОВЕ ГИДРОКСОХЛОРИДА АЛЮМИНИЯ

Майер Н.А., Жохова О.К., Бутов Г.М.

Волжский политехнический институт (филиал) Волгоградского государственного технического университета, Волжский, Россия, www.volpi.ru

В последние годы всё более широкое распространение в практике водоочистки приобретают коагулянты на основе гидроксохлорида алюминия (ГОХА), которые производятся в большинстве случаев в виде водных растворов [1-3]. Однако, жидкий ГОХА обладает повышенной коррозионной активностью за счёт свободной хлороводородной кислоты. Это требует применения специальной возвратной упаковочной тары и вызывает неудобства при использовании такой формы коагулянта в экстремальных условиях. Перевод же ГОХА в твёрдое состояние путём высушивания приводит к резкому удорожанию конечного продукта из-за значительных энергозатрат.

Настоящие исследования направлены на разработку технологии получения твёрдого ГОХА с помощью неорганических электролитов. Известно, что в концентрированных растворах ГОХА в результате поликонденсации возникает новая фаза полиядерных гидроксокомплексов алюминия и раствор становится коллоидным [4]. Это позволило найти условия структурирования ГОХА неорганическими солями и получить новые композиции коагулянтов в твёрдой форме.

Жидкий ГОХА получали путём взаимодействия алюминия с 10-15 % хлороводородной кислотой. По мере протекания данной реакции формируется различное мольное соотношение ионов алюминия и хлора. Перевод полученного таким образом жидкого ГОХА в твёрдое состояние осуществляли путём добавления хлоридов или сульфатов металлов в реакционную массу с соотношением (мольн.) $A1^{3+}$: $C1^{-}$ 1: (0,35-0,70). Для этого в стакан ёмкостью 100 мл вносили 25 г жидкого ГОХА и 0,5 г твёрдых солей (NaCl или $Al_2(SO_4)_3 \cdot 18H_2O$). Смесь перемешивали шпателем и замеряли время перехода композиции из жидкого состояния в твёрдое.

Как видно из табл. 1, при мольном соотношении Al^{3+} : Cl^{-} равном 1: $(0,6-0,\bar{7})$ ГОХА либо совсем не переходит в твёрдую фазу из-за небольшой степени образования $Al(OH)_3$, либо для этого перехода требуется значительное время (1680-3420 мин). При низком соотношении $A\hat{1}^{3+}$: $C\hat{1}^{-} = 1$: 0,35 процесс структурирования протекает очень быстро (1,5-5,0) мин), что также неприемлемо из-за образования твёрдого продукта в аппарате смешения. Это может привести к затруднениям при расфасовке продукта и к поломке оборудования.

Влияние соотношения A1³⁺: C1⁻ в ГОХА на время перехода его из жидкого состояния в твёрдое под действием электролитов

№	Мольное соотношение Al^{3+} : Cl^{-}	Время перехода ГОХА в твёрдую форму, мин	
п/п		NaCl	Al ₂ (SO ₄) ₃ ·18H ₂ O
1	1:0,70	1680	не образуется
2	1:0,60	1080	3420
3	1:0,50	120	180
4	1:0,40	20	64
5	1:0,35	1,5	5

Регулировать время перехода ГОХА в твёрдое состояние можно также изменением температуры и рН. Так при рН 3,5 в обоих случаях жидкий ГОХА практически не становится твёрдым, а при рН 7 и выше в результате гидролиза в осадок выпадает Al(OH), и продукт теряет коагуляционные свойства. Даже небольшое увеличение температуры позволяет значительно снизить время перехода ГОХА в твёрдую фазу $(18^{0} - 43,5 \text{ мин}; 25^{0} - 21,8 \text{ мин})$. При этом уменьшается расход вводимых солей.

Таким образом, регулировать время перехода жидкого ГОХА в твёрдое состояние под действием электролитов можно путём формирования соответствующего соотношения $Al^{3+}\colon Cl^{\cdot}$, а также изменением температуры и рН среды. Это позволяет управлять процессом смешения ингредиентов и производить расфасовку продукта в оптимальном режиме.

Список литературы

- Список литературы

 1. Способ получения хлоральоминийсодержащего коагулянта (варианты): патент РФ № 2089502 / Быкадоров Н.У, Радченко С.С., Вара Н.Ф., Жохова О.К. -1997. Бюл. № 25.

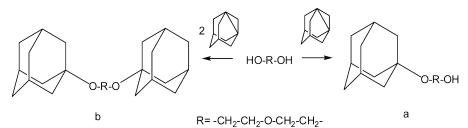
 2. Способ получения основных хлоридов алюминия (варианты): патент РФ № 2083495 / Новаков И.А., Быкадоров Н.У., Радченко С.С., Жохова О.К. 1997. Бюл. № 19.

 3. Способ очистки природных и сточных вод от взвешенных частиц: патент РФ № 2174104 / Новаков И.А., Быкадоров Н.У., Радченко С.С., Жохова О.К. 2001. Бюл. № 27.

 4. С.С. Радченко, Н.У. Быкадоров, И.А. Новаков, О.К. Жохова, Е.Е. Уткина // Журнал прикладной химии. 2002. № 4. Т. 75. С. 529-534.

СИНТЕЗ МОНО- И ДИАДАМАНТИЛОВОГО ЭФИРОВ ДИЭТИЛЕНГЛИКОЛЯ

Мараховская В.А., Данилов Д.В., Зубович Е.А., Бурмистров В.В., Лысых Б.А., Дьяконов С.В., Бутов Г.М.


Волжский политехнический институт (филиал) Волгоградского государственного технического университета, Волжский, Россия

Синтез и изучение свойств ротаксанов и псевдоротаксанов, содержащих адамантильный заместитель, а также комплексов с циклодекстринами. является актуальным направлением органической и супрамолекулярной химии [1-3].

Перспективным методом получения адамантилсодержащих соединений является использование напряженного мостикового пропеллана - 1,3-дегидроадамантана [4] и в настоящее время данное направление активно развивается [5-7].

В настоящей работе в продолжение исследований по синтезу адамантилсодержащих эфиров двухатомных спиртов [8, 9] изучено взаимодействие данного углеводорода с диэтиленгликолем.

Работа выполнена при финансовой поддержке РФФИ (Грант № 12-03-33044).

Синтез моноадамантилового эфира (а) осуществляли по реакции 1,3-ДГА с диэтиленгликолем при соотношении реагентов 1,3-ДГА: гликоль – 1:2. Синтез диадамантилового эфира (b) осуществляли по реакции 1,3-ДГА с диэтиленгликолем при соотношении реагентов 1,3-ДГА: гликоль - 2,5: 1. Реакции проводили в тетрагидрофуране за 3 часа при температуре 65°С. Образующиеся моно- и диадамантиловый эфиры выделяли перекристаллизацией из ацетона.

Индивидуальность, состав и строение полученных соединений доказывали с помощью ТСХ и хромато-масс-спектрометрии.

Взаимодействием 1,3-ДГА с диэтиленгликолем при различном соотношении реагентов синтезированы моно- и диадамантиловый эфиры диэтиленгликоля, которые могут быть использованы для получения таких объектов супрамолекулярной химии, как супрамолекулярные циклодекстриновые полимеры и ротаксаны.

Список литературы
1. F.M. Raymo and J.F. Stoddart. Interlocked macromolecules.
Chem. Rev. 1999. Vol.99. P.1643-1666.
2. Зубович Е.А., Бурмистров В.В., Лысых Б.А., Дьяконов С.В.,
Данилов Д.В., Бутов Г.М. Бутлеровские сообщения. 2013. Т.33. №1. C.65-68.

Jingjing Wang, Jialiang Zhang, Shuling Yu, Wei Wu, and Xiqun Jiang. ACS Macro Lett. 2013. Vol.2. P.82–85.
 Багрий Е.И. Адамантаны. -М.: Наука, 1989. - 290 с.
 K. B. Wi-berg, S. T. Waddell. J. Am. Chem. Soc. 1990. Vol. 112

№ 6. P. 2194–2216.

6. Бугов Г.М., Мохов В.М., Паршин Г.Ю., Камнева Е.А. Известия Волгоградского государственного технического университета. 2011.

№8. С.6-26.

7. Мохов В.М., Бутов Г.М., Дьяконов С.В. Известия Волгоградского государственного технического университета.2012. № 5. С.

6-23.

8. Данилов Д.В., Зубович Е.А., Бурмистров В.В., Лысых Б.А., Дьяконов С.В., Бутов Г.М. Современные наукоёмкие технологии. - 2013. - № 9. - С. 77-78.

9. Бутов Г.М., Саад К.Р., Зубович Е.А., Бурмистров В.В., Лысых Б.А., Дьяконов С.В., Данилов Д.В. 14th Tetrahedron Symposium. Challenges in Bioorganic & Organic Chemistry, 25-28 June 2013, Vienna, Austria / Elsevier. — Vienna, 2013. — URL: https://elsevier.conference-services.net/resources/247/3489/pdf/TETR2013_0226.pdf.