Показатели У и Х могут быть выражены как в относительных, так и в абсолютных показателях. Если показатели У и Х в базисном периоде равны 100%, то формула коэффициента эластичности будет иметь следующий вид: $K_{33} = \Delta y / \Delta x$ Рассчитанный коэффициент эластичности может быть использован для краткосрочного прогнозирования если известно, на сколько изменится фактор в прогнозируемом периоде $\Delta Y_{np} = \Delta x \cdot K_{_{\mathfrak{I},p}}$, где ΔY_{np} — изменение спроса в прогнозируемом периоде; Δx — изменение фактора в прогнозируемом периоде; K_{32} – коэффициент эластичности между спросом и выбранным фактором. По этой

формуле можно рассчитать, на сколько процентов изменится последнее значение в ряду динамики и спрос в прогнозируемом периоде. После чего можно установить объем спроса в прогнозируемом периоде:

$$P_n = [P_{n-1} \cdot (100 + \Delta y)] / 100$$
,

где $P_{"}$ – объем спроса в прогнозируемом периоде; P_{n-1} – объем спроса в последнем периоде до прогноза. Рассмотрим пример применения математического моделирования при прогнозировании спроса.

Имеется динамический ряд показателей.

Периоды	Общий объем реализованного спроса по предприятию (X), цепной темп роста, %	Спрос на группу А(Ү), цепной темп роста, %		
	I вариант	II вариант	I вариант	II вариант
Базисный	99,0	99,0	99,0	99,0
Предшествующий	103,0	103,0	103,0 104,0	
Отчетный	106,0	106,0	108,0	105,0

Для I варианта

$$K_{3x} = \left(\frac{\Delta y}{y}\right) / \frac{\Delta x}{x} = \left[(108 - 99) / 100 \right] / \left[(106 - 99) / 100 \right] = 1,29,$$

или $K_{3n} = \Delta y / \Delta x = [(108-99)/(106-99)] = 9/7 = 1,29$

Это значит, что при повышении совокупного объема спроса по предприятию на 1% спрос на группу А растет на 1,29%, то есть быстрее, чем общий объем реализованного спроса. Для II варианта

$$K_{33} = \left(\frac{\Delta y}{y}\right) / \frac{\Delta x}{x} = \left[(105 - 99) / 100 \right] / \left[(106 - 99) / 100 \right] = 0,86$$
 или
$$K_{33} = \Delta y / \Delta x = \left[(105 - 99) / (106 - 99) \right] = 6/7 = 0,86.$$

Это означает, что при увеличении общего объема реализованного спроса в целом по предприятию на 1% спрос на группу А растет на 0,86%, т.е. медленнее, чем общий объем реализованного спроса. По имеющимся прогнозам, в планируемом периоде общий объем реализованного спроса по предприятию увеличится на 3%. Тогда спрос на группу А в планируемом периоде возрастет: в 1 варианте – на 3,87% ($\Delta y = \Delta x K_{_{2,1}} = 3 \cdot 1,29$); во 2 варианте – на 2,58% ($\Delta y = \Delta x K_{_{2,1}} = 3 \cdot 0,86$). Если учесть, что в отчетном периоде объем реализации по группе А составил 1500 руб., в прогнозируемом периоде возможный объем спроса по данной группе может составить: в 1 варианте - 1558 руб. $P_n = P_{omv} \left(1 + \Delta y_{\kappa o 3 \phi}\right) = 1500 \cdot 1,0387;$ во 2 варианте – 1519 руб. $P_n = P_{omv} \left(1 + \Delta y_{\kappa o 3 \phi}\right) = 1500 \cdot 1,0258.$ При прогнозировании спроса могут быть приме-

нены и структурные модели, образованные на данных бюджетной статистики. В корне разработки таких моделей находятся данные опросов потребителей, при этом потребности группируются по выбранным признакам. Структурная модель имеет вид:

$$Y = \sum_{i=1}^{n} S_i A_i ,$$

где Y- показатель спроса; A_{i} — предпочтительный набор потребностей в i-й группе; S_{i} — число потребителей в i-й группе; n – число групп потребителей. Допустим, что произведена первичная группировка потребителей по уровню среднего дохода на душу населения. Все опрошенные были распределены на 4 группы. Затем на основании опроса определяется спрос на какой-либо товар внутри каждой группы, либо предпочтение одного товара другим. Полученные данные применяются в формуле структурной модели.

Кроме рассмотренных нами методов могут применяться и другие, например экономико-статистические. В условиях рыночных отношений прогнозирование и изучение спроса на товары и услуги является необходимым условием благополучного функционирования предприятий торговли, общественного питания и сферы услуг.

ния и сферы услуг.

Список литературы

1. Орлов А.И. Эконометрика – М.: Экзамен, 2002. – 576 с.

2. Долгополова А.Ф. Моделирование стратегии управления в социально-экономических системах с использованием Марковских процессов / А.Ф. Долгополова // Вестник АПК Ставрополья. – 2011. – № 1. – С. 67-70.

3. Камбарова Е.С., Долгополова А.Ф. Эконометрические методы для исследования экономических явлений // Современные наукоемкие технологии. – 2013. – № 6. – С. 69-72.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В КИПЯЩИХ НАМАГНИЧИВАЮЩИХСЯ СРЕДАХ

Яновский А.А., Спасибов А.С.

ФГБОУ ВПО «Ставропольский государственный аграрный университет», Ставрополь, e-mail: dolgopolova.a@mail.ru

Магнитные жидкости являются уникальными средами способными достаточно сильно намагничиваться в магнитных полях небольшой напряженности при сохранении ими текучести. Сочетание данных свойств магнитных жидкостей открывает большие перспективы их практического применения. Большой интерес ученых и инженеров из разных стран к исследованию процессов теплообмена в кипящих магнитных жидкостях, связан с перспективой применения их в качестве управляемой при помощи магнитного поля закалочной среды, а также с возможным применением в качестве теплоносителя в теплообменных аппаратах и тепловых устройствах. Особого внимания, с точки зрения анализа теплообмена в кипящих жидкостях, в том числе и магнитных, заслуживает исследование процессов роста и отрыва пузырьков пара.

Существует несколько методов позволяющих измерять частоту отрыва и объем пузырьков пара при кипени жидкостей [1, 2]. Фотографический метод пригоден для исследования кипения прозрачных жидкостей и не пригоден для магнитных жидкостей, которые непрозрачны. Индукционный метод позволяют измерять частоту отрыва пузырьков пара при кипени, в том числе, и непрозрачных жидкостей, однако не позволяют оценить изменение формы и объема пузырьков пара при воздействии внешних магнитных полей.

Возможной альтернативой данным методам, применительно к магнитным жидкостям, является математическое моделирование процессов роста и отрыва парового пузырька при кипении магнитной жидкости во внешнем магнитном поле.

Рассчитаем равновесную форму капли магнитной жидкости находящейся на горизонтальной пластине в объеме немагнитной жидкости во внешнем однородном магнитном поле. Условие равновесия границы раздела намагничивающаяся жидкость-немагнитная среда во внешнем магнитном поле может быть описано уравнением [3]:

$$\Delta \rho g z - \mu_0 \int_{H_0}^{H} M dH - \frac{1}{2} \mu_0 (\overrightarrow{M} \overrightarrow{n})^2 + \sigma \left[\frac{1}{R_1} + \frac{1}{R_2} \right] = C. (1)$$

Здесь z – вертикальная координата точки на поверхности капли, отсчитываемая от нижней части капли, R, и R, – радиусы кривизны поверхности раз-

дела намагничивающаяся жидкость-немагнитная среда, определяемые выражениями

$$\frac{1}{R_1} = \frac{z''}{(1+z'^2)^{3/2}} \text{ M } \frac{1}{R_2} = \frac{z'}{x(1+z'^2)^{1/2}},$$

 μ_0 — магнитная постоянная, \vec{n} — единичный вектор нормали к межфазной поверхности, C — постоянная величина. Первое слагаемое в выражении (1) — гидростатическое давление, второе и третье слагаемые — давления, обусловленные магнитным полем и скачком давления на границе раздела магнитная-немагнитная среда.

Рассмотрим случай, когда капля находится во внешнем однородном магнитном поле направленном горизонтально. Так как при больших высотах *z* капли ее форма слабо отличается от цилиндрической, то в этом случае можно допустить, что распределение магнитного поля на границе капли магнитной жидкости удовлетворяет соотношениям, справедливым для бесконечного цилиндра:

$$H_{\varphi} = H_0 \left(k \frac{R^2}{r^2} - 1 \right) \sin \varphi;$$

$$H_r = H_0 \left(k \frac{R^2}{r^2} + 1 \right) \cos \varphi; \quad k = \frac{\mu_i - \mu_l}{\mu_i + \mu_l}.$$
 (2)

Здесь H_{ϕ} и H_r — угловая и радиальная компоненты магнитного поля в цилиндрической системе координат, ϕ — полярный угол, отсчитываемый от направления внешнего магнитного поля H_0 , R — радиус цилиндра, r — расстояние от оси цилиндра до точки, в которой определяются компоненты магнитного поля. С учетом данного распределения поля, проекция уравнения (1) на плоскость xOz декартовой системы координат примет вид:

$$\Delta \rho g z - \mu_0 \chi H_0^2 - \frac{2\mu_0 \chi^2 H_0^2}{(2+\chi)^2} + \sigma \frac{x \frac{d^2 z}{dx^2} + \frac{dz}{dx} \left(1 + \left(\frac{dz}{dx}\right)^2\right)}{x \left(1 + \left(\frac{dz}{dx}\right)^2\right)^{3/2}} = 0,$$
(3)

на плоскость уОz:

$$\Delta \rho g z - \frac{2\mu_0 \chi^2 H_0^2}{(2+\chi)^2} + \sigma \frac{y \frac{d^2 z}{dy^2} + \frac{dz}{dy} \left(1 + \left(\frac{dz}{dy}\right)^2\right)}{y \left(1 + \left(\frac{dz}{dy}\right)^2\right)^{3/2}} = 0.$$
 (4)

Уравнения (3) и (4), описывающие форму капли МЖ во внешнем горизонтальном магнитном поле в двух взаимно перпендикулярных плоскостях, решались численно. На рис. 1 показаны интегральные кривые решения уравнения (3), описывающиеформукаплимагнитнойжидкостив плоскости xOz.

Расчеты проводились для капли высотой z=0,012 м., при разных значениях напряженности магнитного поля. Устойчивые решения уравнения (3) удалось получить в интервале напряженности магнитного поля от 0 до 1,3 кА/м, для уравнения 6 в интервале от 0 до 2 кА/м. При увеличении величины

напряженности поля выше указанных значений, решение становилось неустойчивым.

По представленным на рисунке зависимостям, видно, что ширина основания капли существенно возрастает с увеличением напряженности горизонтального магнитного поля. Так в поле напряженностью 1,3 кА/м ширина основания капли оказывается более чем в два раза больше, чем в случае отсутствия внешнего магнитного поля.

На рис. 2 изображены интегральные кривые уравнения (6), описывающие форму капли магнитной жидкости в горизонтальном магнитном поле в интервале напряженности от 0 до 2 кА/м в плоскости уОz.

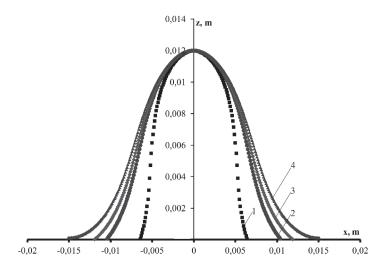


Рис. 1. Изменение формы капли магнитной жидкости высотой z=0,012 м в горизонтальном магнитном поле в проекции на плоскость xOz: 1-0 кA/m, 2-1 кA/m, 3-1,2 кA/m, 4-1,3 кA/m

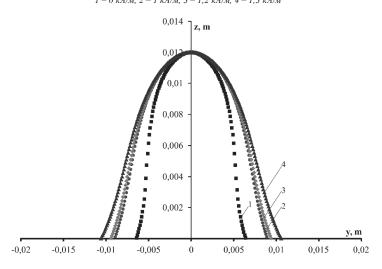


Рис. 2. Изменение формы капли магнитной жидкости высотой z=0,012 м в горизонтальном магнитном поле в проекции на плоскость yOz: 1-0 кА/м, 2-0,6 кА/м, 3-1,2 кА/м, 4-2 кА/м

Из рис. 2 видно, что с увеличением напряженности магнитного поля ширина основания капли в плоскости уОz также увеличивается, но в меньшей степени, чем в плоскости xOz, в которой лежал вектор магнитного поля. Таким образом, решения уравнений (3) и (4) показывают, что ширина основания капли магнитной жидкости увеличивается не только вдоль плоскости параллельной направлению действия силовых линий магнитного поля (плоскость xOz), но и в плоскости к ней перпендикулярной (плоскость yOz). Отношение ширины основания капли в проекциях на плоскости xOz и yOz меняется от 1 до 1,33, при изменении величины магнитного поля от 0 до 1,3 кА/м. Т.е. в отсутствие магнитного поля, поперечными сечениями капли будут являться окружности. При включении же магнитного поля капля вытягивается в обоих направлениях, и поперечные сечения капли приобретают эллипсоидальную форму.

Важно отметить, что, несмотря на то, что рост капли магнитной жидкости на горизонтальной по-

верхности, в экспериментах, происходит за счет поступления магнитной жидкости через отверстие в пластине, а рост пузырька пара при кипении магнитной жидкости происходил за счет испарения со всей поверхности раздела пар-жидкость, есть все основания считать, что процессы роста и формирования капли и пузырька качественно и количественно очень близки. Действительно, характерные времена роста и отрыва капель, в проводимых экспериментах, и пузырьков пара, одинаковы (порядка 1 сек.). Это означает, что инерционные силы и силы гидравлического сопротивления, возникающие при росте и отрыве капель и пузырьков, практически не различаются. Кроме того, слабо отличаются силы, влияющие на размеры и форму пузырька пара и капли магнитной жидкости, описываемые уравнением (2), так как величины входящие в это уравнение, в «холодном» для капли и в «горячем» для пузырька случае, разнятся менее чем на 30%. Сказанное дает основание утверждать, что эксперименты по наблюдению за ростом

и отрывом капли магнитной жидкости в немагнитной среде, адекватно описывают поведение пузырька пара при кипении магнитной жидкости.

Таким образом, теоретически определена величина деформации основания капли магнитной жидкости на горизонтальной поверхности в магнитном поле и дано объяснение влиянию магнитного поля на процессы образования, роста и отрыва капель магнитной жидкости в объеме немагнитной среды и пузырьков пара в намагничивающейся жидкости. Показано, что внешнее горизонтальное магнитное поле, изменяя периметр основания капли магнитной жидкости изменяет и время роста, отрывной диаметр и частоту отрыва капли МЖ от горизонтальной поверхности. Эти результаты дают основание считать, что аналогичные процессы будут наблюдаться и при образовании, ро-

сте и отрыве пузырьков пара при кипении магнитной жидкости в магнитном поле.

Работа выполнялась при финансовой поддержке РФФИ (грант № 14-01-00056).

Список литературы

- Яновский А.А. Тепло- и массоперенос при кипении магнитной жидкости на неограниченной поверхности с точечным подводом тепла. Вестник Нижегородского университета им. Н.И. Лобачевского, 2011. 4(3), 1289-1290.
- 2. Яновский А.А. А.Я. Симоновский, Холопов В.Л. Влияние магнитного поля на процессы парообразования в кипящей магнитной жидкости // Фундаментальные исследования. 2013. №8(2). С. 332-337.
- 3. Яновский А.А., Симоновский А.Я. Влияние однородного магнитного поля на теплообмен при кипении магнитной жидкости на неограниченной поверхности // Вестник Ставропольского государственного университета 2011. №77(6). С. 272-278.

Секция «Математические методы решения инженерных задач», научный руководитель — Светличная В.Б., канд. техн. наук, доцент

ТЕОРИЯ КОРРЕЛЯЦИИ В РЕШЕНИИ ЗАДАЧИ «ОБ ОТЧИСЛЕНИЯХ В ПЕНСИОННЫЙ ФОНД»

Аббазова Р.А., Агишева Д.К., Светличная В.Б., Пак К.И.

Волжский политехнический институт, филиал Волгоградского государственного технического университета, Волжский, e-mail: rimma2705@mail.ru

Решим задачу о распределении 100 предприятий по сумме отчислений в пенсионный фонд X (тыс.руб)

и на социальное страхование работников Y (тыс.руб.) (таблица).

Вычислим первоначальные данные для корреляционной зависимости.

Общие средние.

Среднее арифметическое всех значений СВ X: $\overline{x} = 343$

Среднее арифметическое всех значений СВ Y: $\overline{y} = 350$

	Y	100-200	200-300	300-400	400-500	500-600	Итого	
X		150	250	350	450	550		\overline{yx}
50-150	100	5	3	-	-	-	8	187,5
150-250	200	7	8	-	-	-	15	203,3
250-350	300	-	8	13	5	-	26	338,5
350-450	400	-	4	10	8	6	28	407,1
450-550	500	-	-	9	6	8	23	445,7
Итого:		12	23	32	19	14	100	
	\bar{xy}	158,3	256,5	387,5	405,3	457,1		

Общее среднее квадратическое отклонение:

$$\sigma_x = 121,86 \ \sigma_y = 120,83.$$

Межгрупповое среднее:

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} x_i \cdot y_j \cdot m_{x_i \overline{y}_j} = 130850$$
.

Межгрупповая дисперсия:

$$\delta_{x}^{2} = 9008,37 \delta_{y}^{2} = 8394,39.$$

Вычисленные корреляционные отношения: $\eta_{_{\rm уx}}$ =0,758 $\eta_{_{\rm xy}}$ =0,779 показывают, что между случайными величинами X и Y имеется сильная (тесная) корреляционная зависимость.

. Коэффициент корреляции

$$r_{\hat{a}} = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\sigma_x \cdot \sigma_y} = 0,73$$
.

подтверждает сильную возрастающую линейную зависимость.

Составим по вычисленным данным уравнения линейной регрессии.

$$y_{_X}-\overline{y}=\rho_{_{Y\!X}}\cdot(x-\overline{x})\;,$$
 где $\rho_{_{Y\!X}}=0.72;\,y_{_X}=0.72x+103.04.$

$$x_{y} - \overline{x} = \rho_{XY} \cdot (y - \overline{y}),$$

где
$$\rho_{xy} = 0.74$$
; $x_y = 0.74y + 84$.

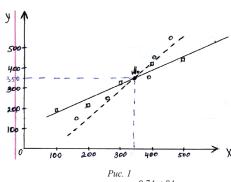


Рис. 1
--- прямая x =0,74y+84;
--- прямая y =0,72x+103,04;
□□□ - условные средние ух;
○○ - условные средние ху;

• $-M_{\rho}(x, y)$ — точка пересечения прямых регрессии, где $x = 343 \ y = 350$

Средние квадратические ошибки: $S_{\xi y} = 31,65$ $S_{x} = 39.87$

Поскольку $S_{\xi y} < \sigma_y$ и $S_{\xi x} < \sigma_y$, то найденные модели линейной регрессии целесообразно использовать в расчетах.