УДК 553.3/.4.078:553.2:551.73

ГЕОХИМИЯ И ПЕТРОЛОГИЯ ТУРГЕНИГОЛЬСКОГО МАССИВА ЗАПАДНОЙ МОНГОЛИИ

Гусев А.И.

Алтайская государственная академия образования им. В.М. Шукшина, г. Бийск, Россия, e- mail - anzerg@mail.ru

Приведены данные по геохимии и петрологии гранитоидов Тургенигольского массива Западной Монголии. Породные типы представлены рапакиви-подобными гранитами, биотитовыми лейкогранитами, двуслюдяными лейкогранитами. Они относятся к железистым и мета-пералюминиеым разностям. Породы отнесены к анорогенным образованиям A2 — типа, связанным с функционированием Сибирского суперплюма. Их генерация проходила в результате мантийно-корового взаимодействия путём ассимиляции пелитов. Плавлению подвергались амфиболиты и пералюминиевые лейкограниты. В породах проявлен тетрадный эффект фракционирования редкоземельных элементов М- типа.

Ключевые слова: анорогенные гранитоиды, рапакиви-подобные граниты, лейкограниты, двуслюдяные граниты, тетрадный эффект фракционирования РЗЭ

GEOCHEMISTRY AND PETROLOGY OF TURGENIGOLSKII MASSIF OF WESTERN MONGOLIA

Gusev A.I.

The Shukshin Altai State Academy of Education, Biisk, Russia, e- mail anzerg@mail. ru

Data of geochemistry, petrology granitoids of Turgenigolskii massif Western Mongolia lead. Rock types presented by rapakivi-similar granites, biotite leucogranites, two-mica leucogranites. It treat to iron and metaperaluminous variaties. Rocks refer to anorogenic formations A2 –type, related with function Siberian Superplum. It generation pass in result of mantle-crust interaction by path assimilation of pelites. Amphybolites and peraluminous leucogranites subjected of melting. A tetrad effect fractionation REE M-type display in rocks.

Keywords: anorogenic granites, rapakivi-similar granites, biotite leucogranites, two-mica leucogranites, tetrad effect fractionation REE

Введение

Монголия характеризуется Западная широким развитием разновозрастных гранитоидов, относящихся к различным петрогеохимическим типам, с которым связано эндогенное оруденение различных металлов - Cu, Au, W, Mo, Sn. Тургенигольский массив приурочен к Хархиринской складчатой зоне Западной Монголии и располагается вблизи крупного эпитермального месторождения серебра Асхатин. Актуальность выявления геохимических особенностей и петрологии массива. Цель исследования осветить геохимические и петрологические особенности Тургенигольского массива Западной Монголии.

Геохимия и петрология тургенигольского массива

Тургенигольский массив локализуется в приграничной части Западной Монголии и Республики Алтай в правом борту р. Асхатин. Массив имеет овальную форму и размеры 10×8 км. Он входит в состав юстыдского комплекса. В его составе выделяются 3 фазы: 1- крупнокристаллические порфировидные амфибол-биотитовые граниты, 2- среднекристаллические био-

титовые лейкограниты, 3- мелкокристаллические двуслюдяные лейкограниты. Последовательность формирования и состав породных типов Тургенигольского массива весьма близки к таковым петротипического Юстыдского массива на территории Горного Алтая. По комплексу признаков порфировидные граниты юстыдского комплекса весьма близки к древним гранитам рапакиви, имеющим возраст 1, 65 млрд. лет. Авторы считают, что гранитоиды юстыдского комплекса являются анорогенными гранитами А, – типа и самыми молодыми гранитами рапакиви в Мире [3]. Возраст гранитоидов Юстыдского массива по двум пробам составляет 375,1±5,4 млн. лет и 375,4±5,5 млн. лет, соответственно, по результатам датирования по цирконам U-Pb методом (SHRIMP II) [7].

Отличительными чертами гранитов Тургенигольского и Юстыдского массива являются: светло-серый цвет с кремовым оттенком, наличие в виде первичного темноцветного минерала биотита, а в грубопорфировидных меланократовых рапакивиподобных разновидностях - биотита и амфибола. Мусковит чаще всего первичный магматогенный в заключительных фазах и

редко - наложенный, широко развит в лейкогранитах и грейзенизированных разностях. В порфировидных разновидностях размеры порфировых выделений микроклина от 0,5 см до 4 см, количество вкрапленников изменяется от единичных зерен до 35-40 %. Порфировидные кварц-плагиоклазовые породы содержат около 20% крупных (от 1 до

2-3 см) вкрапленников олигоклаза (№ 20-25), замещающегося мусковитом и клиноцоизитом. Основная масса состоит из зерен (около 1 мм) кварца (35%) и альбита (40%). В качестве акцессориев присутствуют ильменит, циркон, апатит. Представительные анализы указанных фаз приведены в табл. 1.

Таблица 1 Представительные анализы гранитоидов Тургенигольского массива

Оксиды,							
%, эле-					_		_
менты,	1	2	3	4	5	6	7
г/т				_			
SiO ₂	71,8	71,5	75,7	75,2	76,7	77,0	76,3
TiO ₂	0,57	0,62	0.22	0,24	0,03	0,05	0,02
Al ₂ O ₂	13,51	13,15	13,1	12,92	13,8	12,1	13,93
Fe ₂ O ₃ t	3,51	4,65	1,7	2,10	0,94	2,41	0,95
MnO	0,06	0,05	0,02	0,04	0,94	0,02	0,93
MgO	0,57	0,61	0,02	0,04	0,03	0,02	0,01
CaO	1,63	1,72	1,03	1,05	0,03	0,03	0,02
Na ₂ O	2,55	2,94	3,15	2,70	3,61	3,32	3,65
K_2O	5,16	4,87	4,92	5,18	4,51	4,66	4,41
P_2O_5	0,11	0,11	0,06	0,07	0,05	0,05	0,05
Be	5,1	5,2	5,4	5,5	5,6	5,6	5,5
Li	22	24	23	24	30	35	33
Sn	3,8	4,0	5,0	5,1	6,1	6,5	6,3
Cs	4,8	5,0	5,3	5,5	7,3	8,1	7,5
Cr	40,2	34,6	28,4	122,0	19,9	13,7	19,9
V	30,8	36,8	10,0	122,0	2,5	5,48	2,5
Ni	30,8	4	3	5	4	3,40	2,3
Co	1	2	2	5	3	2	2 2
Sc	5,5	6,0	5,8	6,2	7,3	9,2	8,0
	3,3		<u> </u>	11	10	15	12
Cu		6	19,9				
Pb	11,9 17	11,3 19	19,9	8,34 22	12,9 27	13,0 32	12,9 31
Zn		208		219	580	612	580
Rb	218	301	356 221			21,7	265
Ba Sr	453	113	35,4	539 56,8	265 67,7	15,7	67,7
Nb	86,7 22,5	23,2	16,8	21,7	73,9	32,5	73,9
Ta	1,35	1,47	2,05	1,72	17,9	4,65	17,9
Zr	422	479	126	200	63,4	110	63,4
Hf	11,7	12,5	5,04	6,57	6,43	5,59	
	3,1		4,6				6,43
W Y	62,3	4,0 72,8	4,6 11	5,0	6,0 13,9	6,3	5,8 13,9
			* *	64,9	15,9	61,0	15,5
Th	25,9	19,4	32,6	31,3	15,5	45,5	
U	5,15	2,49	9,75	6,48	4,07 15,9	18,2	4,07 15,9
La	68,4	35,2	41,7	79,0		36,3	
Ce	138	94,6	101	157 17,7	39,9	88,7	39,9
Pr	15,4 55,2	10,3 40,9	12,2 43,8	60,9	5,71	10,3 32,7	5,71
Nd					16,0		16,0
Sm	11,4	9,91 0,96	11,4	11,9	4,69	7,86	4,69
Eu	1,3		0,33	0,78	0,16 3,17	0,05	0,16 3,17
Gd	11,0	10,4 1.89	13,1	11,6		8,04	
Tb	1,75	,	2,44	1,74	0,87	1,67	0,87
Dy	10,3	11,6	17,5	10,4	5,99	10,1	5,99
Но	2,18	2,38	3,83	2,19	1,25	2,16	1,25
Er	6,42	7,36	11,3	6,47	4,51	7,16	4,51
Tm	0,92	1,07	1,78	0,99	1,21	1,22	1,21
Yb	6,09	6,82	11,6	6,67	9,38	8,61	9,38
Lu	0,88	1,04	1,52	1,0	1,2	1,13	1,2
U/Th	0,2	0,13	0,3	0,21	0,26	0,4	0,25
(La/Yb) _N	7,41	3,4	2,37	7,82	1,12	2,78	1,1
A/CNK	1,05	0,98	1,06	1,1	1,26	1,11	1,26

Примечание. Анализы выполнены в Лаборатории СО РАН (г. Новосибирск). 1-2 – Граниты порфировидные амфибол-биотитовые; 3-4 – лейкограниты биотитовые, 5-7 – двуслюдяные лейкограниты. $A/CNK = Al_2O_3/(CaO+Na_2O+K_2O)$. Элементы нормированы относительно хондрита по [8].

Уран-ториевое отношение в породах составляет менее 1 и указывает на не изменённый характер анализируемых пород (табл. 1). В них в повышенных концентрациях отмечаются Rb, Cs, W, Nb, Hf, Sc, U, Th и в пониженных – Li, Sr, Ba, Pb, Zn, Ni, Co, Cu. Отношение лёгких к тяжёлым редкоземельным элементам (РЗЭ) сильно изменчивы и варьируют от 1,1 до 7,82, что указывает на весьма разный тип дифференциации РЗЭ.

Породные типы Тургенигольского массива классифицируются как мета-пералюминиевые и высокожелезистые (рис. 1).

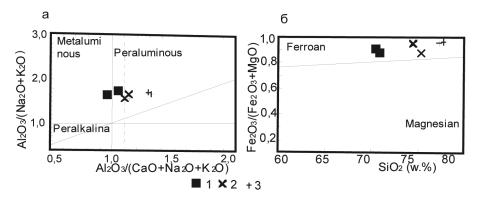


Рис. 1. а- диаграмма $Al_2O_3/(N_2O+K_2O)$ - $Al_2O_3/(N_2O+K_2O+CaO)$ по [12] и б —диаграмма SiO_2 - $Fe_2O_3/(Fe_2O_3+MgO)$ по [15] для пород Тургенигольского массива 1- граниты порфировидные амфиболбиотитовые, 2- лейкограниты биотитовые. 3- двуслюдяные лейкограниты.

На экспериментальных диаграммах по плавлению различных источников породы массива попадают в различные поля.

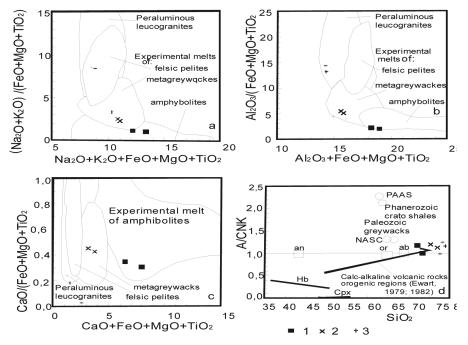


Рис. 2. (a), (b), (c) — диаграммы композиционных экспериментальных расплавов из плавления фельзических пелитов (мусковитовых сланцев), метаграувакк и амфиболитов по [13] для пород Тургенигольского массива; (d) — диаграмма SiO_2 — A/CNK) для пород Тургенигольского массива. Тренд известково-щелочного фракционирования вулканических пород орогенных регионов по [9, 10]. A- Al_2O_x CNK— Cymma CaO, Na_2O , K_2O . Условные обозначения те же, что на рис. 1.

Породы ранней фазы попадают в поле плавления амфиболитов, биотитовые лей-кограниты - в поле плавления граувакк, а заключительные двуслюдяные лейкограниты – в поле плавления пералюминиевых лейкогранитов (рис. 2).

Все породы Тургенигольского массива располагаются на максимуме степени известково-щелочного фракционирования ортоклаза и альбита. Экспериментально установлено, что этой ситуации могут отвечать: уменьшение щёлочности в процессе взаимодействия вода-породы или небольшая

степень ассимиляции пелитов, которые и будут легко увеличивать показатель A/CNK. Вероятно, ассимиляция пелитов и имела место для всех дифференциатов глубинного очага, сформировавшего породы Тургенигольского массива (рис. 2, d).

Соотношение La/Nb и Ce/Y в породах подтверждает этот вывод. На диаграмме виден разброс фигуративных точек, указывающих на то, что генерация пород массива происходила в результате плавления мантийного субстрата и смешение с коровым материалом (рис. 3).

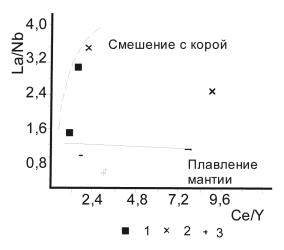


Рис. 3. Диаграмма соотношений Ce/Y - La/Nb для пород Тургенигольского массива Условные обозначения те же, что на рис. 1.

Проведены расчеты значений тетрадного эффекта фракционирования (ТЭФ) РЗЭ для пород массива. Значения ТЭФ и некоторые отношения элементов сведены в табл. 2.

Таблица 2 Отношения элементов и значения тетрадного эффекта фракционирования (ТЭФ) РЗЭ в породах Тургенигольского массива

Отно- ше-ния эле-ментов и значения ТЭФ	1	2	3	4	5	6	7	Отно- шения в хондри- тах
Y/Ho	28,6	30,6	2,9	29,6	11,1	28,2	11,0	29,0
Zr/Hf	36,1	38,3	25,0	30,4	9,9	19,7	9,8	36,0
La/Nb	3,04	1,52	2,48	3,64	0,21	1,11	0,22	30,75
La/Ta	50,7	23,9	20,3	0,15	0,89	7,8	0,9	17,57
Sr/Eu	66,7	117,7	107,3	72,8	423,1	314	423	100,5
Eu/Eu*	0,35	0,29	0,08	0,2	0,12	0,019	0,12	0,32
Sr/Y	1,4	1,55	3,2	0,87	4,9	0,26	4,87	4,62
TE1,3	1,0	1,09	1,08	0,98	1,28	1,14	1,29	-

Примечание. $TE_{1,3}$ — тетрадный эффект фракционирования P39 (среднее между первой и третьей тетрадами) по В. Ирбер [11]; $Eu^*=(Sm_N^++Gd_N^-)/2$. Значения в хондритах приняты по [14].

Значения ТЭФ варьируют от 0,98 до 1,29. Значимые величины ТЭФ, превышающие 1,1, указывают на тетрадный эффект фракционирования М- типа. Отношения элементов в породах Тургенигольского мас-

сива сильно варьируют и имеют величины и ниже, и выше хондритовых значений. Исключение составляет отношение Sr/Y, имеющее во всех случаях величины ниже хондритовых и относится к низко Sr/Y разновидностям гранитов.

На диаграмме $Y/Ho-TE_{1,3}$ видно, что с уменьшением величины отношения Y/Ho от хондритовых значений происходит увеличение $T \ni \Phi M - \text{типа}$ (рис. 4).

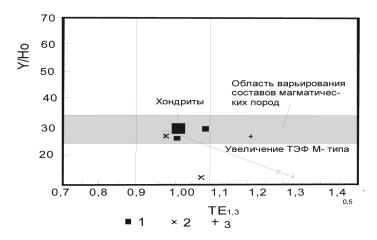


Рис. 4. Диаграмма Y/Ho – TE_{1,3} для пород Тургенигольского массива Условные обозначения те же, что на рис. 1.

Интерпретация результатов

Приведенные данные показывают, что породы Тургенигольского массива формировались в результате мантийно-корового взаимодействия - плавление мантийного субстрата и смешение с коровым материалом по типу ассимиляции пелитовых пород, возможно черносланцевых образований средне-девонского возраста [1, 2]. Такая ассимиляция черносланцевых метапелитов нередко приводит к сильной редуцированности и восстановленности среды магмогенерации [6]. Сравнение с эспеиемнтальными данными позволяют заключить, что источником расплавов были амфиболиты и граувакки, а для самых поздних сильно эволюционрованных двуслюдяных лейкогранитов – пералюминиевые лейкограниты. Гранитоиды Тургенигольского массива, как и Юстыдский массив, относятся к А, – типу гранитоидов, связанных с плюмтектникой [3]. В породах Тургенигольского массива проявлен тетрадный эффект фракционирования РЗЭ М- типа. Его проявление обусловлено обогащённостью магматогенных флюидов летучими компонентами (F, B, P), которые нередко образуют комплексные соединения с РЗЭ и трансформируют соотношение редких земель в сильно эволюционированных гранитоидах [4, 5].

Заключение

Таким образом, гранитоиды Тургенигольского массива относятся к анорогенным гранитоидам, формировавшимся в результате мантийно-корового взаимодействия, связанным с функционированием Сибирского суперплюма. В породах проявлен ТЭФ РЗЭ М - типа, обусловленный активностью летучих компонентов с образованием комплексных соединений.

Список литературы

1.Гусев А.И., Коробейников А.Ф. Известия Томского политехнического университета, 2009. – Т. 315. - № 1. – С.. 18-25

2.Гусев А.И. Мантийно-коровое взаимодействие в области развития неоген-четвертичного магматизма Большого Кавказа // Успехи современного естествознания. -2010. - №12. - С. 130-132..

3.Гусев А.И., Гусев Н.И., Говердовский В.А. Анорогенные гранитоиды Юстыдского массива: петрология, геохимия, флюидный режим // Международный журнал прикладных и фундаментальных исследований, 2011. - № 5. – С. 13-18.

4.Гусев А.И., Гусев А.А. Тетрадный эффект фракционирования редкоземельных элементов и его использование

- в решении проблем петрологии гранитоидов // Успехи современного естествознания, 2011- № 5. С.45-49.
- 5. Гусев А.А., Гусев А.И., Гусев Н.И, Гусев Е.А. Два типа тетрадного эффекта фракционирования редкоземельных элементов в шошонитовых гранитоидах Кавказских Минеральных вод // Современные наукоёмкие технологии, 2011. № 4. С. 17-22.
- 6. Гусев А.И., Гусев Н.И., Красова А.С. Восстановленная интрузивно-связанная Чойская магмо-рудно-метасоматическая W-Au-Te система Горного Алтая // Современные наукоёмкие технологии, 2012. № 3. С. 23-27.
- 7. Гусев Н.И., Шокальский С.П., Вовшин Ю.Е. и др. Гранитоиды и базиты Юстыдского рудного узла//Региональная геология и металлогения, 2009. № 40. С. 54-69.
- 8. Anders E., Greevesse N. Abundences of the elements: meteoric and solar $\,//$ Geochim. Cosmochim. Acta. 1989. V. 53. Pp. 197-214.
- Ewart A. A review of the mineralogy and chemistry of Tertiary – Recent dacitic, latitic, rhyolitic and related salic rocks.
 Trondjemites, Dacites and Related Rocks. – Amsterdam, 1979.
 Pp. 13-121.
- 10. Ewart A. The mineralogy and penrology of Tertiary Recent orogenic volcanic rocks: with special reference to the

- andesitic-basaltic compositional range. Andesites: Orogenic Andesites and Related Rocks. Chichester, 1982. Pp. 25-95.
- 11. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim Cosmochim Acta., 1999. V.63. Note 3/4. P. 489-508.
- 12. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids //Geological Soc. America Bulletin, 1989. V.101. Pp. 635-643.
- 13. Patiño Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? // Geol. Soc. London, Spec. Publ., 1999. V. 168. pp. 55-75.
- 14. Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // In: Magmatism in the ocean basins. Eds. Saunders A.D. & Norry M.J. Geol. Soc. Special Publ., 1989, № 42. P. 313-345.
- 15. Villaseca C., Barbero L., Herreros V. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts // Trans. of Royal Soc. of Edinburg Earth Science, 1998. –V. 89. P. 113-119.