УДК 541.123.6:546.56'22/23 ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ CU,GES,-CU,GESE,

¹Багхери С.М., ²Алвердиев И.Дж., ²Юсибов Ю.А., ¹Бабанлы М.Б. ¹Бакинский Государственный Университет, Баку,

²Гянджинский Государственный Университет, Гянджа e-mail: babanly mb@rambler.ru

Методами ДТА и РФА, а также измерением микротвердости и ЭДС концентрационных относительно медного электрода цепей с твердым электролитом изучена система Cu,GeS₃-Cu,GeSe₃. Построена фазовая диаграмма а также графики концентрационных зависимостей микротвердости и параметров кристаллической решетки. Показано, что система является квазибинарной и характеризуется образованием непрерывного ряда твердых растворов (у).

Ключевые слова: сульфиды и селениды меди-германия, Cu2GeS3, Cu2GeSe3, фазовая диаграмма, твердые растворы.

PHASE EQUILIBRIA IN CU, GES, -CU, GESE, SYSTEM ¹Bagheri S.M., ²Alverdiev I.J., ²Yusibov Y.A., ¹Babanly M.B.

¹Baku State University, Baku,

²Ganja State University, Ganja, e-mail: babanly mb@rambler.ru

The system Cu,GeS₂-Cu,GeSe, has been investigated using DTA, XRD, with the aid of microhardness and EMF measurements with solid electrolyte applied to equilibrated alloys. The phase diagram and plots of the concentration dependences of microhardness and lattice parameters are constructed. It is shown that the system is quasi-binary and characterized by the formation of a continuous fields solid solutions (γ).

Keywords: copper-germanium sulfides and selenides, Cu2GeS3, Cu2GeSe3, phase diagram, solid solutions.

Введение

Соединения A₂B^{IV}X₂ (A-Cu, Ag; B^{IV}-Ge, Sn; X-S, Se, Te) относятся к тройным алмазоподобным полупроводникам и являются перспективными функциональными материалами. Ряд соединений этого класса и твердые растворы на их основе обладают интересными фотоэлектрическими акустооптическими и термоэлектрическими свойствами [1, 4, 7].

Одним из путей поиска и разработки методов направленного синтеза новых многокомпонентных фаз и материалов является изучение фазовых равновесий в соответствующих системах.

В данной работе представлены результаты исследования фазовых равновесий в системе Cu₂GeS₂-Cu₂GeSe₂.

Исходные соединения Cu₂GeS Cu₂GeSe₂ плавятся конгрузнтно при 1215К и 1054К [1,5, 10]. Согласно [5] Си₂GeS₃ кристаллизуется в орторомбической структуре (Пр.гр. Imm2: a=1,1321; b=0,3776; c=0,521 нм). В работе [9] исследованием монокристаллических образцов установлено, что Cu₂GeS₂ имеет моноклинную структуру (Пр.гр. Cc) с параметрами: a = 0.64396, b = 1.13041, c = 0.64193HM, β=108,347⁰, z=4.

В [8] показано, что в интервале температур 893-1054К соединение Cu₂GeSe₂ имеет орторомбическую решетку (Пр.гр. Imm2, а=1,1878; b=0,3941; c=0,5485 нм). В работе [6] получена новая модификация, кристаллизующаяся в моноклинной структуре (Пр. гр.Сm) с параметрами a=0,6772; b=0,3956; с=0,3958 нм; β=125,83°.

Экспериментальная часть

Соединения Cu₂GeS₂ и Cu₂GeSe₂ для проведения исследований синтезировали сплавлением элементарных компонентов с чистотой не менее 99,999% в стехиометрических соотношениях в откачанных до ~10-2Па и запаянных кварцевых ампулах. Синтезы проводили в двухзонных наклонных печах. Нижнюю горячую зону нагревали до температур на ~30-50° выше точки плавления синтезируемого соединения, а холодную до 650К (Cu₂GeS₂) или ~900 К (Cu₂GeSe₂), что несколько ниже температур кипения серы и селена соответственно [2].

Индивидуальность синтезированных соединений контролировали методами ДТА и РФА.

Полученные нами рентгенограммы соединений Cu₂GeS₃ и Cu₂GeSe₃ были идентичны с данными работ [8, 9]. Однако анализ рентгенограмм показал, что они полностью индицируются в тетрагональной сингонии (Пр.гр.І4) Расшифровкой рентгенограмм получены следующие кристаллографические данные:

 Cu_2GeS_3 : a = 0.37676, c = 0.52154 nm Cu_2GeSe_4 : a = 0.39465, c = 0.54888 nm

Сплавы исследуемой системы готовили сплавлением исходных соединений в кварцевых ампулах в условиях вакуума. По данным ДТА выборочных составов литых негомогенизированных сплавов определили температуры солидуса, несколько (~30-50°) ниже которых их выдерживали в течение ~200ч. Затем отжиг проводили при 800К в течение ~600ч. с последующим охлаждением в режиме выключенной печи.

Эксперименты проводили методами ДТА (прибор Термоскан-2, хромель-алюмелевые термопары) и РФА (порошковый дифрактометр D8 ADVANCE фирмы Bruker), а также измерением микротвердости (микротвердомер MicroMet 5101) и ЭДС концентрационных цепей типа (1):

(-) Cu (тв) | Cu₄RbCl₃I₂ (тв) | (Cu-Tl-Se) (тв) (+)

Соединение $Cu_4RbCl_3I_2$, использованное в качестве твердого электролита в цепях типа (1), синтезировали сплавлением стехиометрических количеств химически чистых, безводных CuCl, CuI и RbCl в вакуумированной (~10⁻² Па) кварцевой ампуле при 900 К с последующим охлаждением до 450К и гомогенизирующим отжигом при этой температуре в течение 100 ч [3].

ЭДС измеряли в электрохимической ячейке компенсационным методом с помощью высокоомного цифрового вольтметра марки В7-34А в интервале температур 300-390К. Более подробно методика ЭДС экспериментов описана в [3].

Результаты и их обсуждение

По данным ДТА (табл.1) построили Т-х диаграмму системы Cu₂GeS₃-Cu₂GeSe₃ (рис.1а). Как видно, эта система квазибинарна и характеризуется неограниченной взаимной растворимостью компонентов в жидком и твердом состояниях. Её фазовая диаграмма относится к I типу по Розебому. Максимальный температурный интервал плавления твердых растворов составляет 30⁰.

РФА подтвердил однофазность сплавов Cu_2GeS_3 - Cu_2GeSe_3 во всей области составов (рис.2). Рентгенограммы индицированы в тетрагональной сингонии (Пр.гр.I4) и получены параметры решетки (табл.), концентрационные зависимости которых практически подчиняются правилу Вегарда (рис.1,б).

Рис. 1. Фазовая диаграмма (а), зависимости параметров кристаллической решетки (б), микротвердости (в) и ЭДС концентрационных цепей типа (1) от состава системы Cu,GeS₃-Cu,GeSe₃

Результаты измерений микротвердости также находятся в соответствии с Т-х диаграммой (рис.1,в). Все сплавы характеризуются одним значением микротвердости, а их зависимость от состава выражается кривой с пологим максимумом. Это свидетельствует о слабой упругой деформации кристаллической решетки исходных тройных соединений при взаимном замещении атомов серы и селена.

Значения ЭДС цепей типа (1) являются монотонной функцией состава (рис.1,г), что указывает на непрерывное изменение состава фазы – правого электрода, т.е. на образование неограниченных твердых растворов замещения. Следует отметить хорошее соответствие численных значений ЭДС обоих исходных соединений с литературными данными [3], что подтверждает обратимость составленных концентрационных цепей и указывает на эффективность применения метода ЭДС к изучению твердофазных равновесий.

Список литературы

1. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. – Баку: Изд-во БГУ, 1993. – 342 с.

2. Эмсли Дж. Элементы / пер. с англ. – М.: Мир, 1993. – 256 с.

3. Babanly M.B., Yusibov Yu.A., Babanly N.B. The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides / Electromotive force and measurement in several systems. Ed.S.Kara. Intechweb.Org. 2011. – PP.57-78.

Таблица 1

Состав, мол% Cu ₂ GeSe ₃	Термические эффекты, К	H _m	Е, мВ (300К)	Параметры тетрагональной решетки, Å	
				а	С
$0 (Cu_2GeS_3)$	1215	370	443	3.7676	5.2154
10	1190-1205	380	-	-	-
20	1170-1195	400	434	3.7935	5.2619
40	1158-1165	410	427	3.8355	5.3218
60	1105-1132	360	418	3.8738	5.3783
80	1075-1100	320	408	3.9059	5.4416
90	1063-1075	280	-	-	-
100	1054	230	400	3.9465	5.4888

Рис. 2. Порошковые дифрактограммы некоторых сплавов системы Cu,GeS₃-Cu,GeSe₃

4. Cho J.Y., Shi X., Salvador J.R., Meisner G.P. et al. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu_2GeSe_3 // Phys.Rev. – 2011. – V. 84.

5. Khanafer M., Rivet J. and Flahaut J. Etude du systeme $Cu_2S\text{-}GeS_2$ // Bull.Soc.Chim.Fr. - 1973. - V.3. - PP.859-862.

6. Lychmanyuk O.S., Gulay L.D., Olekseyuk I.D., Stepien-Damm Yu. et al. of the Ho₂X₃-Cu₂X-ZX₂ (X =S, Se; Z = Si, Ge) systems // Polish. J.Chem. – 2008. – V.81. – PP.353-367.

7. Marcano G., Bracho D.B., Rincon C., Perez G.S., Nieves L. On the temperature dependence of the electrical and optical properties of $Cu_{2}GeSe_{3}$ // J.Appl.Phys. – 2000. – V.88. – PP.822-828.

8. Marcano G., Ieves L. Temperature dependence of the fundamental absorption edge in Cu_2GeSe_3 // J. Appl. Phys. – 2000. – V.87(3). – PP.1284-1286.

9. Parasyuk O.V., Piskach L.V., Romanyuk Y.E., Olekseyuk I.D. et al. Phase relations in the quasi-binary Cu_2GeS_3 –ZnS and quasi-ternary Cu_2S –Zn(Cd)S–GeS₂ systems and crystal structure of Cu_2ZnGeS_4 // J. Alloys Compd. – 2005. – V.397. – PP.85-94.

10. Tomashik V. Copper-germanium-selenium // Ternary Alloys. VCH. - 2005. - V.2. - PP.288-299.