УДК 552.11:553.078(571.151)

НОВЫЕ ДАННЫЕ ПО ОРУДЕНЕНИЮ КОЛЫВАНСКОГО МЕСТОРОЖДЕНИЯ АЛТАЯ

Гусев А.И.

Алтайская государственная академия образования им. В.М. Шукишна, Бийск, e-mail: anzerg@mail.ru

Приведены новые данные по типам оруденения и составу руд Колыванского месторождения на Алтае. В пределах месторождения совмещены разновозрастные типы оруденения: медно-молибден-порфировое, грейзеновое медно-молибден-вольфрамовое, пегматитовое бериллий-молибден-вольфрамовое с танталом и ниобием. В грейзеновом типе руд помимо основных компонентов присутствуют в промышленных количествах индий, висмут, селен. Температуры формирования грейзеновых руд составляли для ранней стадии 380-415, а для поздней — 280-310°С. В процессе становления оруденения отмечается высокая активность серы во флюндах. Приведены данные о увеличении перспектив месторождения за счёт доизучения Южного участка месторождения и медно-молибден-порфирового оруденения.

Ключевые слова: порфировое оруденение, грейзены, пегматиты, медь, молибден, вольфрам, висмут, ниобий, тантал, селен, активность серы, запасы, прогнозные ресурсы.

A NEW DATA ON ORE MINERALIZATION OF KOLYVANSKOE DEPOSIT OF ALTAI

Gusev A.I.

The Shukshin Altai State Academy of Education, Biisk, e-mail: anzerg@mail.ru

Data on types ore mineralization and composition of ore Kolyvanskoe deposit of Altai lead. The different age of type ore mineralization reconciled in deposit: copper-molybdenium-porphyre, greisens copper-molybdenium-tungsten, pegmatite beryllium-molybdenium-tungsten with tantalium and niobium. Indium, selenium, bismuth present in greisen type of ore besides basic components. Temperatures of forming greisens ores composition for early stage are 380-415, but for last stage – 280-310 °C. High activity of sulfur noted in fluid in process becoming ore mineralization. Data about increasing of perspective deposit for account researching of South section of deposit and copper-molybdenium-porphyre ore mineralization lead.

Keywords: porphyre ore mineralization, greisens, pegmatites, copper, molibdenium, tungsten, bismuth, niobium, tantalium, selenium, activity of sulfur, assay value, extension ores.

Введение

Колыванское месторождение со времени его открытия (1723 г) считалось вначале медным. В 1723 г. рудоискательной партией А. Демидова месторождение рассматривалось как медное и почти 100 лет разведывалось с перерывами в 10 лет и более. Палиас и Рекованц (1792 г.) описывали его как медное, но у последнего впервые упоминается о "черном шерле". Позднее в процессе его изучения были открыты кварцево-грейзеновые зоны с вольфрамитом и молибденитом, которые особенно были востребованы во время Великой отечественной войны (1941-1945 г.г.), когда требовались металлы для получения танковой брони. Последующая история разведки и эксплуатации месторождения связаны с жильным кварцевогрейзеновым вольфрамит-молибденитовым типом оруденения, а медные руды не изучались. В связи с небольшими запасами вольфрама и молибдена в рудах к месторождению был потерян интерес.

В процессе проведения поисковых работ в рамках ГДП-200 (2005-2008 г.г.) получены новые данные по геологическому

строению района, интрузивному магматизму и оруденению Колыванского месторождения, а также соседних районов. К северозападу от Колыванского месторождения выявлен новый тип оруденения железо-оксидмедно-золоторудный Локтевского рудного узла, сопоставляемый с типом Клонкарри в Австралии [2, 3].

Геологические особенности месторожения

Колыванское месторождение образовалось в зоне влияния долгоживущей Северо-Восточной зоны смятия, которая не только разграничивает Рудно-Алтайские и Горно-Алтайские структуры, но и контролировала размещение интрузивных массивов Колыванского (верхнедевонский усть-беловский комплекс) и Синюшинского (поздней перми – нижнего триаса) [7, 8]. Месторождение локализуется в области влияния обоих массивов. Такая его позиция и определяла весь ход формирования месторождения.

Установлено, что массивы усть-беловского комплекса формировались в разных тектонических блоках Горного Алтая (Чарыш-

ском, Талицком, Бийско-Катунском) и с ними связаны различные типы оруденения, в том числе и медно-порфировое. Как правило, это многофазные интрузивы, в составе которых рассматривается 5 фаз: 1 – габбро, габбро-долериты; 2 – диориты, кварцевые диориты; 3 – гранодиориты; 4 – граниты и меланограниты; 5 – лейкограниты. В составе Колыванского массива нами выявлены все породные типы вышеуказанных фаз. Характерной особенностью пород Колыванского массива, это развитие порфировых разностей гранодиорит-порфиров, гранит-порфиров 4 и 5 фаз внедрения, которые особенно широко распространены в юго-западной части массива, вблизи вольфраммолибденового кварцево-грейзенового Колыванского месторождения.

Типы оруденения Колыванского месторождения

В пределах месторождения выделяются три геолого-промышленных типа оруденения: медно-молибден-порфировый, связанный с гранитоидами усть-беловского комплекса (массив Колыванский) (D_3), и кварцево-грейзеновый молибден-вольфрамовый и пегматоидный молибден-вольфрам-бериллиевый, связанные с гранитоидами Синюшинского массива (T_1), который представляет собой типичную редкометалльную рудно-магматическую систему [1]. По составу биотита они относятся к шошонитовому типу [1].

Медно-молибден-порфировый тип оруденения. Этот тип оруденения по нашим данным локализуется в южной оконечности Колыванского массива и сосредоточен среди биотитовых гранит-порфиров заключительной фазы этого массива на площади 600×700 м по обе стороны от секущей дайки лейкогранитов синюшинского комплекса. Биотитовые граниты повсемстно претерпели пропилитизцию, а местами березитизацию. В гранит-порфирах медно-молибден-порфировое оруденение образует прожилково-вкрапленные выделения кварца с сульфидами.

Вкрапленность пирита и халькопирита размерами от 0,5 мм до 2-5 мм также сопровождается оторочками кварца, редко биотита и гидробиотита. Местами помимо сульфидов присутствует вкрапленность магнетита неправильной формы размерами о 1 до 4 мм. Магнетит сопровождается каёмками кварца с серицитом и хлоритом. Отмечено,

что вблизи контакта с поздней дайкой лейкогранитов магнетит и пирит приобретают кристаллическое строение в результате перекристаллизации. Пирит в таких участках даёт комбинированные формы октаэдра и куба, а магнетит кристаллизуется в виде правильных кубических кристаллов и сростков кристаллов. В таких приконтактовых участках с поздней дайкой лейкогранитов синюшинского комплекса среди гнёзд хлорита наблюдаются зёрна граната размерами от 1 до 3 мм.

На участках березитизации гранит-порфиров Колыванского массива проявлено прожилковое оруденение в виде гетерогранобластового кварца 1 генерации мощностью от 3 до 15 мм и секущих их прожилков кварца 2 генерации мощностью от 2 до 5 мм, сопровождающихся мусковитом и аллоториоморфными выделениями молибденита и халькопирита, редко пирита, пирротина, сфалерита и шеелита размерами от 1 до 3 мм. При этом кварц 1 генерации характеризуется резко волнистым угасанием, указывающим на значительные деформации. Местами березиты содержат от 30 до 50 % мусковита. Среди таких мусковитовых участков наблюдаются редкие гнёзда и прожилки сульфидов - халькопирита, пирита, редко молибденита, борнита и халькозина.

В прожилково-вкрапленнных порфировых рудах по результатам штуфного опробования концентрации компонентов варьируют (%): меди от 0,3 до 1,5, молибдена от 0,05 до 0,2, висмута от 0,05 до 0,2, цинка от 0,1 до 0,5, золота от 0,5 до 2 г/т.

Порфировое оруденение требует доизучения, так как масштабы его не ограничиваются той площадью, которая указана выше.

Кварцево-грейзеновый молибден-вольфрамовый тип оруденения. Разработка месторождения велась с поверхности и подземными горными выработками до глубины 200-240 м. Добыто около 650 тыс.т. руды (2,5 тыс.т вольфрамового концентрата). Параллельно с эксплуатацией проводилсь разведочные работы.

Общая длина рудной площади, разделенной на три участка — Северный, Центральный и Южный, около 2 км. Месторождение приурочено к дайкообразному телу, сложенному аплитовидными биотитовыми гранитами, гранит-порфирами и аплитами синюшинского комплекса. Представлено серией кварцевых жил субмеридионального простирания. Известно около 26 про-

мышленных жил. На Северном и Центральном участках кварцевые жилы относительно выдержаны и сопровождаются грейзенизацией по зальбандам. На Южном участке кварц образует уже преимущественно линзы и гнезда внутри широко развитых грейзенизированных пород. Кварцевые жилы месторождения нередко кулисообразно заходят одна за другую как по простиранию, так и по падению.

На месторождении имели место пострудные нарушения. Наиболее ясно выражен "Большой взбросо-сдвиг", по которому рудные тела Северного участка перемещены относительно Центрального к северо-западу. Горизонтальное смещение также значительное. Известны нарушения с амплитудой смещения порядка 0,5-6,0 м.

Кварцевые жилы месторождения имеют небольшую мощность (0,15-1,0 м, средняя 0,35 м). Рудные жилы мощностью 0,2-0,7 м имеют протяженность 50-450 м. По своему строению они неоднородны. В некоторых центральная часть сложена кварцем, сменяющимся к периферии кварцево-слюдистой породой. Окварцевание, постепенно затухая, переходит через грейзенизированную породу в неизмененный микроаплит.

По характеру минерализации месторождение может быть отнесено к медно-висмут-вольфрамовому при решительно преобладающей роли вольфрама. Минералогический состав руд (в порядке выделения минералов): кварц, магнетит, вольфрамит, пирит (I), арсенопирит, молибденит, шеелит, айкинит, виттехенит, висмут, пирит (II), халькопирит, куприт, азурит, малахит. Кроме того, в рудах встречались слюда, турмалин, флюорит, полевой шпат, гранат (данные Ю.А.Спейта, А.М.Новоселова). Вольфрамит, молибденит, висмутовые минералы и арсенопирит имеют мелко гнездовый характер распределения. Вольфрамит обычно встречается в виде мелких зерен от 1 до 10 мм, создавая агрегативные скопления размером до 15-20 см в диаметре. Размер отдельных кристаллов не превышает 5-7 см. По составу вольфрамит нормальный и марганцовистый (гюбнерит). При этом гюбнерит ассоциирует с флюоритом.

На Южном участке нами отмечены, кроме грейзенов, фельдшпатолитовые метасоматиты. Это от крупно- до гигантско-зернистых метасоматитов с гипидиоморфнозернистыми выделениями микроклин-пертита

(1-20 мм) и более редкими скоплениями идиоморфного альбит-олигоклаза (0,6-1 мм). Такие участки фельдшпатолитов имеют размеры от 1 до 2,5 м в поперечнике. Местами среди фельдшпатолитов отмечены гнёзда турмалина шерл-дравитового ряда и вкрапленность шеелита, пирита, арсенопирита.

Грейзены на месторождении имеют, преимущественно, кварц-альбит-микроклинмусковитовый состав с пиритом в виде вкрапленности и гнёзд аллотриоморфных выделений и призматических кристаллов вольфрамита, вкрапленников арсенопирита размерами от 1 до 6 мм.

Отмечаются также грейзены с турмалином, пиритом, вольфрамитом. В таких грейзенах наблюдаются системы разновозрастных прожилков. Ранние из них представлены кварцем 1 генерации «льдистого» серого цвета мощностью от 2 до 7 см (с волфрамитом, ареснопиритом, пирротином, висмутином). Поздние прожилки кварца 2 генерации белого, местами прозрачного с турмалином, пиритом 2 генерации, вольфрамитом, халькопиритом, редко — борнитом.

Кварцевые жилы мощностью от 5 до 15 см, залегающие среди грейзенов, как правило, зональные. В центре таких жил локализуется серый, тёмно-серый «льдистый» кварц 1 генерации крупнокристаллический с редкой вкрапленностью пирита, арсенопирита, висмутина, самородного висмута, пирротина, вольфрамита, молибденита.

В зальбандах отмечается кварц 2 генерации более мелкокристаллический с вкрапленностью и гнёздами пирита, халькопирита, редко – борнита.

Неясное положение занимают прожилки кварца белого, почти прозрачного с вкрапленностью и гнёздами флюорита и гюбнерита. Взаимоотношений с кварцем, содержащим вольфрамит, нами не обнаружено. Составы элементов – примесей вольфрамитов и гюбнеритов представлены в табл. 1.

Сравнение составов элементов-примесей в вольфрамитах и гюбнеритах показало, что в вольфрамитах наблюдаются более высокие концентрации таких элементов как хром, кобальт, медь, ниобий, уран и меньше – кадмий, титан. При этом в вольфрамитах в сравнении с гюбнеритами ощутимо преобладают средние и тяжёлые редкоземельные элементы: иттрий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций (табл. 1).

 $\label{eq:Tadin} T\,a\, {\rm f}\, \pi\, u\, {\rm g}\, a \quad 1$ Содержания элементов-примесей в вольфрамитах и гюбнерите (г/т)

Элементы	Номера проб вольфрамитов		Номера проб гюбнеритов	
	3559-5	3478-4	3486-7	3486-9
Be	8,11	1,2	2,26	2,1
Ti	216	156	295	304
V	36,0	32,3	37,2	36,9
Cr	44,3	38,4	24,2	21,2
Mn	98351	86538	150345	165206
Fe	126313	127507	57895	56798
Co	3,69	3,27	6,93	7,08
Ni	149	0,002	14,0	14,1
Cu	1632	1022	34,7	33,9
Zn	168	162	156	158
Ga	11,3	7,17	11,1	10,2
Rb	16,7	6,15	9,51	8,93
Sr	49,4	100,0	45,0	45,8
Y	119	212	6,3	6,1
Zr	15,7	24,6	20,2	21,3
Nb	166,7	166,0	71,3	70,3
Mo	22,8	26,3	27,7	25,9
Cd	0,062	0,032	0,081	0,092
Cs	13,3	3,73	5,02	5,2
Ba	88,2	89,4	88,9	88,7
La	5,65	1,61	3,78	3,65
Се	16,9	3,73	7,22	6,34
Pr	1,56	0,429	0,711	0,87
Nd	5,54	1,91	2,53	2,45
Sm	2,14	1,74	0,731	0,654
Eu	0,401	0,349	0,299	0,207
Gd	5,04	9,07	1,03	1,02
Tb	1,96	4,0	0,389	0,354
Dy	22,0	47,1	4,07	4,12
Но	6,82	14,6	0,981	0,945
Er	29,4	59,0	4,39	3,45
Tm	6,97	12,5	1,47	1,34
Yb	60,1	97,3	16,5	15,9
Lu	10,5	15,9	3,03	2,98
Hf	0,854	0,929	0,904	0,901
Та	2,25	3,5	2,07	2.12
Pb	1017	1860	902	897
Th	6,98	2,76	3,72	3,68
U	119	13,6	10,8	10,3
U/Th	17,0	4,9	2,9	2,8

Примечание. Анализы выполнены методом ICP-MS в Лаборатории ИМГРЭ (г. Москва).

Вольфрамиты характеризуются и более высокими отношениями урана к торию. Температуры гомогенизации кварца льдистого ранней стадии с пиритом 1, арсенопиритом, вольфрамитом, висмутином варьи-

руют от 380 до 415 ° С. Температуры гомогенизации кварца 2 генерации второй стадии с халькопиритом, пиритом 2 генерации и борнитом значительно ниже — 280-310 ° С (рис. 1).

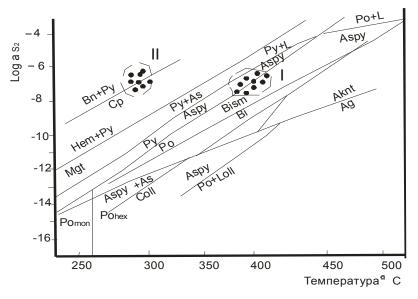


Рис. 1. Диаграмма a_{s2} — температура по [9] для стадий Колыанского месторождения Ру- пирит, bn — борнит, po — пирротин, aspy — арсенопирит, loll — лёллингит, l- жидкость. Сгущением точек показаны поля соотношений активности серы и температур для разных стадий

Активность серы при формировании оруденения разных стадий была высокой и почти одинаковой с некоторым увеличением для поздней стадии.

Пегматоидный тип оруденения. Отмечен нами на Южном участке, где наблюдаются пегматоиды кварц-полевошпатового состава с турмалином, редко — с турмалином, пиритом, вольфрамитом, халькопиритом. Мощности пегматоидов от 10 до 30 см. Иногда отмечаются блоковые дифференцированные разности пегматитов с отчётливым кварцевым ядром и крупноблоковой периферической частью. При этом различаются альбитовые блоки с турмалином, пиритом, вольфрамитом, молибденитом, бериллом, халькопиритом и микроклин-пертитовые — с гранатом и танталит-колумбитом.

Содержания полезных компонентов в пегматоидном типе руд составляют (%): вольфрама от 0,05 до 0,2, молибдена от 0,03 до 0,1, бериллия от 0,05 до 0,2, меди от 0,06 до 0,2, тантала и ниобия от 0,01 до 0,15.

Зона окисления на месторождении достигает глубины 50 м. Частичному изменению вольфрамит подвержен только в зоне интенсивно окисленных руд.

Среднее содержание полезных компонентов в рудах по месторождению составляет: триоксида вольфрама – 0,66%; висмута – 0,13% и меди – 1,54%. В вольфрамовом концентрате содержатся: меди – 4,25%, свинца – 0,27%, цинка – 0,33%, молибдена

– 0,038%, вольфрама – 18,0%, селена – 0,0077%. В сульфидном концентрате: меди -14-16%, железа -29-30%, цинка -1-3%, висмута -0.8-1%, молибдена -0.002-0.2%, триоксида вольфрама - 0,2-0,3%, свинца -0.2%, селена – 150-160 г/т, индия – 30-100 г/т, серы до 4,3%. Состояние запасов выражается следующими цифрами: триоксида вольфрама категории B -494 т и $C_1 + C_2 - 1404,0$ т; висмута категории B - 79 т и $C_1 + C_2 - 229$ т; меди категории B - 863 т и $C_1 + C_2 - 2363$ т. Перспективные запасы, прирост которых возможен за счет Южного участка и глубоких горизонтов Северного и Центрального участков, выражаются цифрой 2,0-2,5 тыс.т. триоксида вольфрама.

Интерпретация результатов

В пределах Колыванского месторождения совмещены разновозрастные типы оруденения медно-молибден-порфировое и комплексное грейзеновое медно-молибденвольфрамовое с висмутом, а также пегматитовое вольфрам-молибден-бериллиевое с танталом и ниобием. Помимо главных компонентов руд в грейзенах на месторождении определенный интерес представляют также висмут, индий, теллур, селен, ниобий, тантал, т.е. по минеральному и химическому составу руды являются комплексными. Прирост запасов по меди может быть осуществлён за счёт изучения южной периферии Колыванского гранитного мас-

сива и оценки медно-молибден-порфирового оруденения.

Заключение

Таким образом, на Колыванском месторождении распространены разновозрастные интрузивные комплексы: позднедевонский усть-беловский и раннетриасовый Синюшинский массив, относящийся к белокурихинскому комплексу шошонитовых гранитоидов [4, 6].

По генезису и составу месторождение относится к комплексным объектам. В нём выделяется: 1 — более ранее медно-молибден-порфировое оруденение, связанное с гранитоидами Колыванского массива устьбеловского комплекса; 2 — пневматолито-гидротермальное высокотемпературное медно-вольфрам-молибденовое с висмутом и 3 — пегматитовое вольфрам-молибден-бериллиевое, а также тантал-ниобиевое, связаные с Синюшинской интрузией гранитов белокурихинского комплекса.

Список литературы

- 1. Гусев А.И. Петрология редкометалльных магмо-рудно-метасоматических систем Горного Алтая // Известия Томского политехнического университета. Томск. 2005. № 4. Том 307. С. 43-47.
- 2. Гусев А.И., Гусев Н.И. Железо-оксид-медно-золоторудный класс месторождений западной части Алтае-Саянской области и прилегающих территорий // Природа и экономика Кузбасса. Региональный сборник научных статей. Вып. 11. Т. 1. Новокузнецк, 2007. С.10-14.
- 3. Гусев А.И. Месторождения спекулярита Горного Алтая // Руды и металлы. -2007. -№ 2. C.33-42.
- 4. Гусев А.И., Гусев Н.И., Табакаева Е.М. Петрология и рудоносность белокурихинского комплекса Алтая. Бийск: БПГУ, 2008. 193 с.
- 5. Гусев А.И. Типизация гранитоидов на основе составов биотитов // Успехи современного естествознания. $2009.-N\!\!_{2}4.-C.54-57.$
- 6. Гусев А.И., Гусев А.А. Шошонитовые гранитоиды: петрология, геохимия, флюидный режим и оруденение. Москва: Изд-во РАЕ, 2011. 125 с.
- 7. Гусев А.И. Минерагения и полезные ископаемые Алтайского края. Бийск: Изд-во ГОУВПО АГАО, 2011. 365 с.
- 8. Чекалин В.М. Колыванское месторождение висмутмедно-вольфрамовых руд в Горном Алтае // Руды и металлы. -1999. № 4. С. 22-30.
- 9. Barton P.B., Skinner B.J. Sulfide mineral stabilities // Geochemistry of hydrothermal ore deposits. New York. 1979. P.278-403.