УДК 548.1

ВОЗМОЖНЫЕ ВАРИАНТЫ ПРОЯВЛЕНИЯ СТРУКТУРНЫХ ОСОБЕННОСТЕЙ 4D Р-ЯЧЕЙКИ В 3D ЯЧЕИСТОМ ПРОСТРАНСТВЕ

Иванов В.В., Таланов В.М.

Южно-Российский государственный технический университет, Новочеркасск, e-mail: valtalanov@mail.ru, valivanov11@mail.ru

Обсуждаются возможные варианты проявления структурных особенностей 4D Р-ячейки в 3D ячеистом пространстве.

Ключевые слова: модулярная Р-ячейка, ячеистое пространство, транзитивная область, структурное состояние

THE POSSIBLE VARIANTS OF THE STRUCTURAL PECULIARITY MANIFESTATION OF 4D P-CELL ONTO 3D CELLULAR SPACE Ivanov V.V., Talanov V.M.

South-Russian state Engineering University, Novocherkassk, e-mail: valtalanov@mail.ru, valivanov11@mail.ru

The possible variants of the structural peculiarity manifestation of 4D P-cell onto 3D cellular space was discussed.

Keywords: modular P-cell, cellular space, transition domain, structural state

Анализ вероятных структурных состояний кристаллических фаз основан на предположении о возможности проявления особенностей 4D структур в 3D кристаллических структурах в локальной транзитивной области – переходной области [1, 2]. Анализируемые структурные состояния в транзитивной области и концентрация этих областей в кристаллическом пространстве в определенной мере могут служить аппроксимантами вероятных аномальных структурных состояний материалов [3, 4]. Поэтому анализ возможных структурных состояний кристаллических фаз, а также анализ связанных с ними проявлений аномальных геометрико-топологических характеристик, влияющих на чувствительные к ним свойства, в частности на топологические свойства модулярных структур [5-23], аномальную атомную плотность отдельных

фрагментов [10-14] или их возможный квазифрактальный характер на поверхности кристаллов [24-27], является актуальным.

Сравнительный анализ структурных состояний проводили для R⁴ и R³ структур, вложенных в предварительно структурированные (ячеистые) 4D и 3D пространства. В данной работе предполагается, что возможны по крайней мере два механизма проявления структурных элементов гипотической гиперкубической Р-ячейки (вершин, ребер, граней, кубических ячеек) (рис. 1) в структурированном Р-ячеистом 3D пространстве: механизм замещения структурных элементов 3D ячейки и механизм внедрения в нее. Разная маркировка ребер, граней и кубов гиперкубической ячейки на рисунке 1 означает возможные различия в ориентации реализуемых на них структурных состояний структур.

Рис. 1. Проективное изображение гиперкуба, 4 разновидности его 3D кубов, 6 разновидностей граней и 4 разновидности ребер

Некоторые результаты реализации этих механизмов представлены на рисунках 2–5. Очевидно, что геометрико-топологические характеристики транзитивных областей в каждом случае существенно отличаются друг от друга. Необходимо отметить, что одна из основных характеристик транзитивной области – ее площадь, существенно зависит от механизма и вида проявления структурных элементов кубической ячейки на сетке (табл. 1).

Рис. 2. Фрагмент ячеистого 3D пространства (а) и результаты проявления 4D ячейки с помощью структурных элементов 4D ячейки (ребер, граней и кубических ячеек) по механизму замещения центральной вершины кубической ячейки (б) и механизму симметричного внедрения в центральную область фрагмента (в)

В предположении о равенстве площади транзитивной области суммарной площади ячеек, из которых она была образована, можно сделать заключение о том, что практически во всех случаях (за исключением некоторых вариантов на рис. 3-6, фрагменты б) наблюдается аномальное увеличение атомной плотности.

Рис. 3. Фрагмент ячеистого 3D пространства (а) и результаты проявления 4D ячейки с помощью структурных элементов (вершин, граней и кубических ячеек) по механизму замещения ребра кубической ячейки (б) и механизму симметричного внедрения в центральную область фрагмента около ребра (в)

Рис. 4. Фрагмент ячеистого 3D пространства (а) и результаты проявления 4D ячейки с помощью структурных элементов (вершин, ребе и кубических ячеек) по механизму замещения грани кубической ячейки (б) и механизму симметричного внедрения в центральную область фрагмента в области грани (в)

Проанализируем вероятные соотношения между R⁴-структурой и ее возможными подструктурами в 3D пространстве. Будем априори предполагать, что между геометрико-топологическими свойствами 4D ячеек и ее 3D подъячеек и такими же свойствами соответствующих модулярных R⁴ и R³ структур, вложенных в эти ячейки, существует морфизм соотношений. В этом случае любая 3D модулярная структура может быть подструктурой по крайней мере одной из модулярных 4D структур. Другими словами, любая 3D модулярная структура может иметь не одно структурное «продолжение» в дополнительном измерении и должна рассматриваться как результат 3D сечения по крайней мере нескольких модулярных 4D структур.

Рис. 5. Фрагмент ячеистого 3D пространства (а) и результаты проявления 4D ячейки с помощью структурных элементов (вершин, ребер, граней и кубических ячеек) по механизму замещения кубической ячейки (б) и по механизму симметричного внедрения в центральную область фрагмента в области этой ячейки (в)

Таблица 1

Таблица 2

Структурные элементы		Объем транзитивной области	
3D ячейки	4D ячейки	Механизм замещения	Механизм внедрения
вершина	Ребро	8	8
	Грань	8	8
	Р-ячейка	8	8
ребро -	Вершина	12	4
	Ребро	12	-
	Грань	12	12
	Р-ячейка	12	12
грань -	Вершина	18	2
	Ребро	18	6
	Грань	18	-
	Р-ячейка	18	18
Р-ячейка -	Вершина	27	1
	Ребро	27	3
	Грань	27	27
	Р-ячейка	2.7	-

Объем транзитивной области в зависимости от механизма и вида проявления гиперпространства

Примечание. Площади транзитивных областей приведены в единицах ячеек квадратной сетки.

Проанализируем возможные структурные состояния R³ структур как вероятных подструктур определенной R⁴ структуры. При этом наряду с кристаллической компонентой состояния будем учитывать и фрактальную компоненту, предполагая возможность существования гибридных R⁴ структур. Таким образом, кроме кристаллических структур вида R⁴_{4r} рассмотрим еще четыре разновидности: детерминистические гибридные структуры вида R⁴_{3r,1P} R⁴_{2r,2P} R⁴_{1r,3f} и детерминистические фрактальные структуры вида R⁴_{4f} (табл. 2).

Возможные структурные состояния R³ подструктур соответствующей R⁴ структуры

Возможные структурные состояния	p p ²			
R ⁴ структуры	возможные структурные состояния к подструктур			
Структура вида R ⁴				
(r, r, r, r)	4 (r, r, r)			
(r_1, r_1, r_1, r_2)	(r, r, r) и 3 (r ₁ , r ₁ , r ₂)			
$(\mathbf{r}_1, \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_2)$	2 (r ₁ , r ₁ , r ₂) и 2 (r ₁ , r ₂ , r ₂)			
$(\mathbf{r}_1, \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$	(r ₁ , r ₁ , r ₂), (r ₁ , r ₁ , r ₃) и 2 (r ₁ , r ₂ , r ₃)			
(r_1, r_2, r_3, r_1)	2 (r ₁ , r ₂ , r ₃), (r ₁ , r ₁ , r ₃) и (r ₁ , r ₁ , r ₃)			
$(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_2)$	2 (r ₁ , r ₂ , r ₃), (r ₁ , r ₂ , r ₂) и (r ₂ , r ₂ , r ₃)			
(r_1, r_2, r_3, r_3)	2 (r ₁ , r ₂ , r ₃), (r ₁ , r ₃ , r ₃) и (r ₂ , r ₃ , r ₃)			
(r_1, r_2, r_3, r_4)	(r ₁ , r ₂ , r ₃), (r ₁ , r ₂ , r ₄), (r ₁ , r ₃ , r ₄) и (r ₂ , r ₃ , r ₄)			
Структура вида R ⁴ _{3rtf}				
(r, r, r, f)	(r, r, r) и 3 (r, r, f)			
$(\mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{f})$	(r ₁ , r ₁ , r ₂), (r ₁ , r ₁ , f) и 2 (r ₁ , r ₂ , f)			
(r_1, r_2, r_3, f)	(r ₁ , r ₂ , r ₃), (r ₁ , r ₂ , f), (r ₁ , r ₃ , f) и (r ₂ , r ₃ , f)			
Структура вида R ⁴ _{2r2f}				
$(\mathbf{r},\mathbf{r},\mathbf{f},\mathbf{f})$	2 (r, r, t) и 2 (r, f, t)			
(r_1, r_2, f, f)	2 (r ₁ , r ₂ , f), (r ₁ , f, f) и (r ₂ , f, f)			
(r, r, f_1, f_2)	(r, r, f ₁), (r, r, f ₂) и 2 (r, f ₁ , f ₂)			
(r_1, r_2, f_1, f_2)	(r ₁ , r ₂ , f ₁), (r ₁ , r ₂ , f ₂), (r ₁ , f ₁ , f ₂) и (r ₂ , f ₁ , f ₂)			
Структура вида R ⁴ _{Ir.3f}				
$(\mathbf{r}, \mathbf{f}, \mathbf{f}, \mathbf{f})$	(f, f, f) и 3 (r, f, f)			
$(\mathbf{r}, \mathbf{f}_1, \mathbf{f}_1, \mathbf{f}_2)$	(f ₁ , f ₁ , f ₂), (r, f, f) и 2 (r, f ₁ , f ₂)			
$(\mathbf{r}, \mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$	$(f_1, f_2, f_3), (r, f_1, f_2), (r, f_1, f_3) \bowtie (r, f_2, f_3)$			
Структура вида R ⁴ _{4f}				
$(\mathbf{f}, \mathbf{f}, \mathbf{f}, \mathbf{f})$	4(f, f, f)			
(f_1, f_1, f_1, f_2)	(f, f, f) и 3 (f ₁ , f ₁ , f ₂)			
(f_1, f_1, f_2, f_2)	2 (f ₁ , f ₁ , f ₂) и 2 (f ₁ , f ₂ , f ₂)			
(f_1, f_1, f_2, f_3)	$(f_1, f_1, f_2), (f_1, f_1, f_3) \le 2 (f_1, f_2, f_3)$			
(f_1, f_2, r_3, f_1)	2 (f_1 , f_2 , f_3), (f_1 , f_1 , f_3) и (f_1 , f_1 , f_3)			
(f_1, f_2, f_3, f_2)	2 (f_1 , f_2 , f_3), (f_1 , f_2 , f_2) и (f_2 , f_2 , f_3)			
(f_1, f_2, f_3, f_3)	2 (f_1 , f_2 , f_3), (f_1 , f_3 , f_3) и (f_2 , f_3 , f_3)			
(f_1, f_2, f_3, f_4)	$(f_1, f_2, f_3), (f_1, f_2, f_4), (f_1, f_3, f_4) \mathbf{\mu} (f_2, f_3, f_4)$			

Примечание. r – кристаллическая, a f – фрактальная компоненты структурного состояния.

Из представленных в таблице 2 данных следует, что существует определенное многообразие проявления R⁴ структур в 3D пространстве. Например, структура вида R⁴_{3r1f} формально имеет 4 разновидности R^{3 подструктур: R³ структуру и 3 вида R³ структур. Аналогичный гетероморфизм су-} ществует и для R⁴ структур, в которых может реализоваться заданная R³ структура. Например, структура вида R³, может быть подструктурой как структуры вида R^4_{4r} , так и структуры вида $R^4_{3r,1f}$. Формально из возможности существования такого многообразия проявлений структур вытекает, что определенные гибридные кристаллофрактальные R⁴ структуры в 3D пространстве могут выглядеть кристаллическими R³ структурами, и наоборот, некоторые кристаллические R³ структуры в гиперпространственном измерении могут иметь фрактальное «продолжение» и быть подструктурами кристалло-фрактальной R⁴_{3r1f} структуры. От каких факторов это может зависеть?

Можно предположить, что реализация одного вполне определенного варианта R_3^3 из всего многообразия формально возможных вариантов проявления гиперструктурного дополнения зависит от совокупности следующих факторов:

 способа получения и термодинамических условий синтеза,

 внешних динамических воздействий со стороны окружающей внешней среды,

 от степени возможного взаимодействия между подпространствами гиперпространства и соответствующего энергетического взаимодействия («борьбы за существование») между альтернативными подструктурами гиперструктуры.

Результаты работы получены при поддержке Минобрнауки РФ в рамках государственного задания на проведение НИОКР, шифр заявки N6.8604.2013.

СПИСОК ЛИТЕРАТУРЫ

1. Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. – М.: ФИЗМАТЛИТ, 2010. – 264 с.

2. Стюарт Я. Концепции современной математики. / Пер. с англ. Н.И. Плужниковой и Г.М. Цукерман – Мн: Выш. школа, 1980. – 384 с.

3. Иванов В.В., Щербаков И.Н. Моделирование композиционных никель-фосфорных покрытий с антифрикционными свойствами. – Ростов н/Д: Изд-во журн. «Изв. вузов. Сев.-Кавк. регион», 2008. – 112 с.

4. Иванов В.В., Таланов В.М. // Успехи соврем. естествознания, 2013 – № .7 – С. 64-67.

5. Иванов В.В., Таланов В.М. // Журн. структурн. химии. – 1992. – Т.33, № 3. – С. 137-140.

6. Иванов В.В., Таланов В.М. // Журн. структурн. химии. – 1992. – Т.33, № 5. – С. 96-102.

7. Иванов В.В., Таланов В.М. // Неорган. материалы, 1992. – Т.28, № 8. – С. 1720-1725.

8. Иванов В.В., Таланов В.М. // Неорган. материалы.-1992. – Т.28, № 9. – С. 2022-2024.

9. Иванов В.В., Таланов В.М. // Неорган. материалы. – 1995. – Т.31, № 2. – С. 258-261.

10. Иванов В.В.: Ерейская Г.П., Люцедарский В.А. // Изв. АН СССР. Неорган. материалы, 1990. – Т. 26, № 4. – С.781-784.

11. Иванов В.В.. Ерейская Г.П. // Изв. АН СССР. Неорган. материалы. – 1991. – Т.27, № 12. – С. 2690-2691.

12. Иванов В.В., Таланов В.М. //Изв. вузов Сев.-Кавк. регион. Естеств. науки. – 1995. – № 2. – С. 38-43.

13. Иванов В.В. // Изв. вузов. Сев.-Кавк. регион. Естеств. науки.- 1996.- N1. – С. 67-73.

14. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. – Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. – 204 с.

15. Ferraris G., Makovicky E., Merlino S. Crystallography of modular structures. – IUC Oxford Science Publications. 2008. - 370 p.

16. Иванов В.В., Таланов В.М. // Кристаллография, 2010. Т.55, № 3. С.385-398.

17. Иванов В.В., Таланов В.М. // Журн. неорганической химии, 2010. Т.55, № 6. С. 980-990.

18. Иванов В.В., Таланов В.М. // Физика и химия стекла, 2008. Т.34. № 4. С. 528-567.

19. Иванов В.В., Таланов В.М. // Наносистемы: Физика, Химия, Математика, 2010. Т.1. № 1. С. 72-107.

20. Иванов В.В., Таланов В.М., Гусаров В.В. // Наносистемы: Физика, Химия, Математика, 2011. Т.2. № 3. С. 121-134.

21. Иванов В.В., Таланов В.М. // Успехи соврем. естествознания, 2012. – № 8. – С.75-77.

22. Иванов В.В., Таланов В.М. // Успехи соврем. естествознания, 2012. – \mathbb{N}_{2} 10. – С. 78-80.

23. Иванов В.В., Таланов В.М. // Успехи соврем. естествознания, 2012. – № 9. – С. 74-77.

24. Иванов В.В., Таланов В.М. // Успехи соврем. естествознания, 2012. – N_{2} 3. – С. 56-57.

25. Иванов В.В., Демьян В.В., Таланов В.М. // Успехи соврем. естествознания, 2012. – № 4. – С. 230-232.

26. Иванов В.В., Таланов В.М. / Журн. структурн. химии, 2013. Т.54. № 2. С. 354-376.

27. Иванов В.В., Таланов В.М. // Кристаллография, 2013. – Т.58. № 3. С. 370–379.