

Рис. 1. Кривые псевдоожижения осевым потоком воздуха в камерах с различным углом при вершине конуса для рапса с высотой слоя H_0 =120 мм: 1–15°; 2–25°; 3–35°.

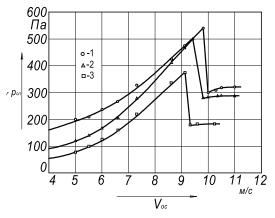


Рис. 2. Кривые псевдоожижения осевым потоком воздуха в камерах с различным углом при веришне конуса для слоя рапса с удельной нагрузкой на газораспределительную решетку $G_{y0} = 70.7 \text{ кг/м}^2$: $1-15^\circ$, $2-25^\circ$, $3-35^\circ$

В начальный момент при увеличении скорости ожижающего агента, подаваемого тангенциально, гидравлическое сопротивление $\Delta p_{\rm ca}$ слоя возрастает по степенному закону. Такая зависимость характерна для режима фильтрации. При скорости воздуха, превышающей соответствующую $\Delta p_{\rm rax}$, наблюдается взрывообразное разрушение слоя с резким уменьшением сопротивление слоя за счет образования канала.

ПОДБОР ПОРОГА ЗАДЕРЖКИ МЕМБРАН ДЛЯ ПРЕДВАРИТЕЛЬНОГО ФИЛЬТРОВАНИЯ ПИВА

Подпоринов А.А., Демченко С.Ю., Потапов А.И., Логинов А.В.

Воронежский государственный университет инженерных технологий, Воронеж, e-mail: luckyshax@mail.ru

Для предварительного удаления микроорганизмов были использованы мембраны с размером пор 7, 5, 3 и 1,2 мкм. Эксперимент проводили до опорожнения емкости, полученный пермеат собирали для последующего фильтрования на мембране 0,4 мкм. В каждом опыте определяли рабочее давление и производительность керамических мембран по нефильтрованному пиву. Результаты опытов приведены на графике: зависимость проницаемости мембран с диаметром пор 7, 5, 3 и 1,2 мкм от величины рабочего давления (рис. 1).

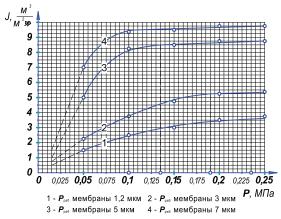


Рис. 1. Зависимость проницаемости мембран от избыточного давления

Результаты анализов фильтрованного пива представлены в таблице. По результатам анализов можно сделать вывод, что фильтруемость полученного пива (для последующего осветления) отличная. Такие показатели как экстрактивность, объемная доля спирта не исследовались, так как мы посчитали, что если мембрана с пористостью 0,4 мкм не влияла на качество пива, то, соответственно, мембраны с большим размером пор не изменят данных показателей.

Таблица Микробиологические и физико-химические свойства предварительно осветленного пива

Наименование показателя	Размер пор, мкм			
	1,2	3	5	7
Содержание микроорганизмов, млн. кл./мл	0,6	1,02	1,38	3,1
рН	4,38	4,38	4,38	4,38
Мутность, ед. ЕВС	0,77	1,22	1,27	1,64

ОПТИМИЗАЦИЯ ЭНЕРГОЗАТРАТ НА ПРОЦЕСС ПРИГОТОВЛЕНИЯ ФАРША

Прянишников В.В., Зинченко С.В., Трушечкин А.В., Долгополов О.В.

Воронежский государственный университет инженерных технологий, Воронеж, e-mail: luckyshax@mail.ru

Как показано в главе 3, существует область по ω , в которой качество фарша отвечает технологическим требованиям. Структура функции качества может быть представлена из следующих предположений.

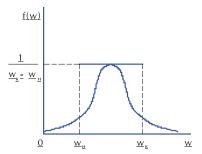


Рис. 1. К выбору функции качества