УДК 631.316.6 + 631.319.2

ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ КИНЕМАТИКИ СЕПАРИРУЮЩИХ РАБОЧИХ ОРГАНОВ КУЛЬТИВАТОРА

¹Анутов Р.М., ²Котельников В.Я., ³Козявин А.А., ²Котельников А.В., ⁴Тищенко Д.Е.

¹Грязинский культиваторный завод, Грязи;

 2 Юго-Западный госуниверситет, Курск, e-mail: rotor9090@mail.ru; 3 ККГСХА, Курск;

⁴ГКЗ, Грязи

Даны исследования технологических параметров кинематики ротационных сепарирующих рабочих органов культиватора.

Ключевые слова: культиваторы, экологическая обработка почвы ,сохранение влаги, энергии, времени и средств

INVESTIGATION OF TECHNOLOGICAL PARAMETERS OF THE KINEMATICS OF SEPARATING THE WORKING BODIES OF THE CULTIVATOR

¹Anutov R.M., ²Kotelnikov V.Y., ³Kozyavin A.A., ²Kotelnikov, A.V., ⁴Tishchenko D.E.

¹Gryazinsky cultivator plant, Gryazi;

²Southwestern State University, Kursk, e-mail: rotor9090@mail.ru;

³KKGSKHA, Kursk;

⁴SRC, Gryazi

Given the study of rotational kinematics of the process parameters separating the working bodies of the cultivator.

Keywords: cultivators, environmental soil moisture retention, energy, time and money

При выполнении технологического процесса пальцы сепаратора совершают сложное движение. Отнесем это движение к системе координат x, o, y. Оно слагается из вращательного вокруг геометрической оси диска и поступательного (переносного) движения вместе с диском. Траектория движения конца пальца сепарирующего диска является кривой циклоидального типа.

Уравнение движения точки О запишем в параметрической форме (рис. 1):

$$x = R (\alpha' i - \sin \alpha'). \tag{1}$$

$$y = R (1 - \cos \alpha'), \tag{2}$$

где α' — угол поворота пальца от вертикального радиуса; i — передаточное число тормоза; R — радиус диска ротора сепаратора.

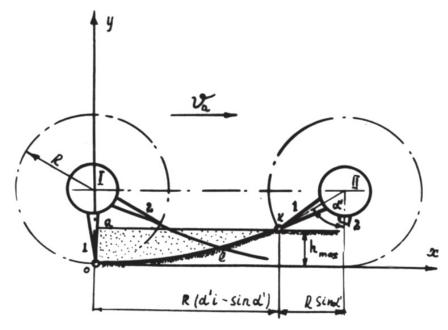


Рис. 1 Кинематика сепарирующего диска

В принятой системе координат и при заданном направлении скорости v_a 1 движения агрегата конец пальца O, перемещаясь из положения 1 в положение 2, опишет часть дуги удлиненной циклоиды ок и повернется при этом на угол α' . Конец пальца 2 опишет траекторию аналогичного типа, но смещенную по фазе на угол α , равный углу между смежными пальцами 1, 2. На некоторой высоте (в точке e) траектории пересекаются. Как отмечалось, эта точка имеет важное технологическое значение. Она определяет, в частности, отклонения глубины обработки от максимального заглубления пальца h_{max} .

В параметрических уравнениях выразим x через y. Для этого, исключив параметр α' из уравнения (2) и подставив его значение в уравнение (80), получаем:

$$\cos\alpha' = 1 - \frac{y}{R},$$

откуда

$$\alpha' = \arccos\left(1 - \frac{y}{R}\right).$$

Подставляя правую часть этого равенства в уравнение (1), имеем:

$$x = Ri \cdot \arccos\left(1 - \frac{y}{R}\right) - \sqrt{y(2R - y)}.$$

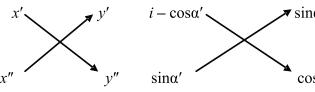
Полученное уравнение является трансцендентным, в котором у является сложным

аргументом. Для решения его целесообразно у записать:

$$y = \frac{x(1 - \cos \alpha')}{\alpha' i - \sin \alpha'}.$$

Движение пальца в почве сопровождается ее скалывание. Если траектория движения конца пальца совпадает с линией скалывания, то его заглубление будет определяться этой линией. В этом случае линия скалывания почвы совпадает с касательной к траектории движения конца пальца, а угол скалывания — с углом наклона касательной. Углы скалывания определяются физико-механическими свойствами почвы, а углы наклона касательных к траекториям

движения равны первым производным $\frac{dy}{dx}$


Найдем значение угла α' поворота пальца 1 в точке перегиба траектории движения и определим условия, при которых максимальный угол наклона касательной не превышает угла θ скалывания почвы. Первая производная равна:

$$\frac{dy}{dx} = \frac{\sin \alpha'}{i - \cos \alpha'};$$

вторая производная:

$$\frac{dy}{dx} = \frac{i\cos\alpha' - \cos\alpha' - \sin\alpha'}{i - \cos\alpha'}.$$

Записав решение определителя (по Е.Н. Ефимову [54]):

найдем максимальное значение угла α' поворота пальца до точки перегиба траектории и передаточное число i, соответствующее этому углу.

Приравняв решение определителя или числитель второй производной к нулю:

$$i\cos\alpha' - \cos^2\alpha' - \sin^2\alpha' = 0$$
,

получаем:

$$i = \frac{1}{i \cos \alpha'}.$$
 (3)

Тогда угол α' поворота пальца от вертикального радиуса до точки перегиба кривой будет равен:

$$\alpha' = \arccos \frac{1}{i}$$
.

Если считать, что точка перегиба траектории находится в почве, а угол γ_{max} касательной к ней совпадает с углом θ скалыва-

ния, то между углом α' поворота пальца до точки перегиба и углом θ скалывания имеется связь:

$$\alpha' = \frac{\pi}{2} - \theta$$
 при $\theta = \gamma_{\text{max}}$

$$i = \frac{1}{\cos \alpha'} = \frac{1}{\sin \theta}.$$
 (4)

Таким образом, рациональное передаточное число определяется по уравнению (4). При увеличении передаточного числа тормоза угол наклона касательной в точке перегиба уменьшается. В этой связи важно знать промежуточные и экстремальные значения углов ν наклона касательной и углов ν поворота пальца до точки перегиба при переменных передаточных числах I тормоза.

Для определения взаимосвязи текущих значений углов γ и α' рассмотрим геометрическую модель работы диска (рис. 2). Здесь

ОВ – радиус диска; ОР – мнимый радиус окружности, катящейся без скольжения относительно полюса Р скоростей. По условию работы диска:

$$OP = Ri$$
.

Используя выполненные построения, найдем соотношения между радиусом -

вектором R_a и R_b , а также углами γ_{max} и α' , соответствующими точке перегиба циклоидальной кривой. Из ΔBOD и ΔBDP видно,

$$BD = BP\sin\gamma; (5)$$

$$BD = R \sin \alpha'. \tag{6}$$

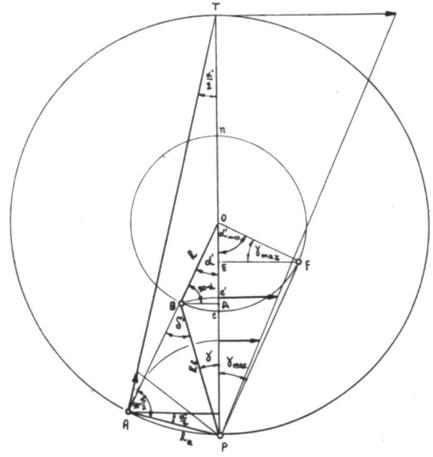


Рис. 2. К определению зависимости между углами γ и α'

Здесь у угол между радиусом-вектором BP и OP; в пределе он равен v_{\max} и ограничен радиусами-векторами OP и PF.

Из уравнений (5) и (6) запишем:

$$R_b = BP = \frac{R\sin\alpha'}{\sin\nu}. (7)$$

A из ΔATP соответственно:

$$R_a = AP = 2Ri \cdot \sin \frac{\alpha'}{2}.$$
 (8)

Из соотношения сторон ΔPBA получаем:

$$\frac{R_a}{R_b} = \frac{\sin \delta}{\sin \left(90^\circ - \frac{\alpha'}{2}\right)}.$$

Здесь $\angle APO$ равен 90° – $\frac{\alpha'}{2}$

Заменяя R_a и R_b их значениями из уравнений (7) и (8), составим равенство:

$$\frac{2Ri \sin \frac{\alpha'}{2}}{\sin \delta} = \frac{R \sin \alpha'}{\sin \nu \sin \left(90^{\circ} - \frac{\alpha'}{2}\right)}.$$
 (9)

Где угол δ равен:

$$\delta = \alpha' + \gamma$$
.

Тогда уравнение (9) можно записать

$$\frac{2Ri\,\sin\!\frac{\alpha'}{2}}{\sin(\alpha'+\gamma)} = \frac{\sin\alpha'}{\sin\nu\cos\frac{\alpha'}{2}}.$$

После замены двойного угла получаем:

$$\frac{i\sin\alpha'}{\sin\alpha'} = \frac{\sin(\alpha' + \gamma)}{\sin\nu}.$$

Откуда

$$\operatorname{ctg} \gamma = \frac{i - \cos \alpha'}{\sin \alpha'}.$$
 (10)

Уравнение (89) определяет функциональную взаимосвязь между параметрами γ , i, α' .

Учитывая, что скорость конца пальца в любой точке кривой линии резания направлена по касательной к ней, можно записать: а уравнение нормали к касательной в точке конца радиуса имеет вид:

$$K' = \frac{i - \cos \alpha'}{\sin \alpha'}.$$

Перемножив K и K', получим:

$$K' \cdot K = -1$$
.

Отсюда следует, что угол PFO равен $\frac{\pi}{2}$,

а радиус-вектор FP проходит всегда через точку полюса P.

Йодставляя в уравнение (89) переменные значения I, α' , определяем модуль угла γ наклона касательной в пределах: для i=1-6 и $\alpha'=0-90^\circ$ (таблица).

Изменения угла γ наклона касательной к траектории движения конца пальца в зависимости от угла α' и передаточного числа i

Угол поворота пальца, ° α'	Значение углов γ при <i>i</i>						
	1	1,5	2	3	4	5	6
0	90	0	0	0	0	0	0
5	87,0	9,8	4,8	2,4	1,7	1,2	1,0
10	85,0	19,5	9,7	4,8	3,3	2,5	1,8
15	82,0	25,7	14,2	7,3	4,8	3,7	2,8
30	75,0	38,0	23,8	13,3	9,2	6,8	5,5
45	67,3	38,5	28,8	17,2	12,2	9,4	7,40
60	60,0	40,8	30,0	19,2	14,0	10,8	8,7
75	52,2	38,3	28,8	19,3	14,3	11,7	9,5
90	45,0	33,7	26,7	18,3	14,2	11,3	9,4

При проектировании диска сепаратора необходимо, чтобы угол α' наклона пальца в почве не совпадал (а был несколько больше угла γ) с касательной к траектории движения в точке перегиба и углом θ скалывания почвы.

Выволы

Установлены аналитические соотношения технологических, кинематических и конструктивных параметров ротационных рабочих органов культиватора.