комплексной переработки молочной сыворотки по ресурсосберегающим технологиям с использованием местного растительного сырья дает возможность в максимальной мере скорректировать состав и свойства готовых продуктов, производить с требуемым уровнем пищевой ценности, регулировать функциональные свойства и снизить их себестоимость.

В целях расширения ассортимента данной группы продукции, внедрения малоотходных технологий переработки местного ягодного сырья и молочной сыворотки, повышения пищевой ценности, разработаны рецептуры и технологии новых быстрорастворимых гранулированных завтраков (42 разновидности) и напитков (28 разновидностей) функционального назначения. Разработана и утверждена техническая документация на данную продукцию.

В процессе разработки рецептур завтраков и напитков в качестве основного сырья использовали: муку овсяную, концентраты на основе ягодных экстрактов из высушенных ягод и/или выжимок семейства брусничных, молочную сыворотку, крахмал картофельный, порошок из клубней топинамбура, выжимки ягод. Целенаправленный подбор рецептурных компонентов осуществляли для каждого вида продуктов с учетом того, чтобы он содержал ингредиенты, усиливающие положительное действие друг друга на организм.

Изучены физико-химические показатели и пищевая ценность разработанных завтраков и напитков, г/100 г: массовая доля сухих веществ — 5,6-8,5; белков — 1,5-6,1; жира — 0,1-1,1; углеводов — 69,2-78,6; титруемых кислот (в пересчете на яблочную кислоту) — 0,7-2,3; пектиновых веществ — 1,1-2,1; золы — 1,22-1,85. Исходя из пищевой ценности разработанных быстрорастворимых продуктов, расчетная пи-

щевая и энергетическая ценность 200 см³ готового продукта (25 г сухого гранулята – рекомендуемое количество) – 77,6–81,6 ккал.

Содержание витаминов и других биологически активных веществ в разработанных быстрорастворимых гранулированных продуктах (на 100 г): витамина C-21,5-122,5 мг; витамина $B_1-0,14-1,48$ мг; витамина $B_2-0,28-2,47$ мг; витамина $B_6-0,22-2,06$ мг; витамина $B_9-0,02-0,43$ мг; витамина PP-1,21-17,33 мг; витамина PP-1,21-17,3

Проведены исследования антиоксидантной активности разработанной продукции на модельной реакции инициированного окисления кумола. Установлено, что данные продукты являются типичными акцепторами пероксидных радикалов, они тормозят скорость окисления кумола, а многие из них имеют ярко выраженный период индукции. Содержание антиоксидантов в них составило 0,173–0,347 моль/кг.

Проведенные комплексные исследования показали, что быстрорастворимые гранулированные продукты на основе молочной сыворотки и ягодного сырья по составу, свойствам, пищевой, в том числе физиологической, ценности и антиоксидантным свойствам в полной мере отвечают требованиям, предъявляемым к продуктам функционального назначения.

Таким образом, разработанные технологии позволяют решить проблему переработки отходов (молочной сыворотки) производства, а применение ягодного сырья позволит создать широкий ассортимент лечебно-профилактических продуктов для населения различных возрастных категорий и позволит обогатить их рацион как отдельными биологически активными веществами, так и их комплексами.

«Практикующий врач», Италия (Рим, Флоренция), 6-13 сентября 2012 г.

Медицинские науки

ВЛИЯНИЕ ЛОКАЛЬНОГО ПРИМЕНЕНИЯ ЭПИДЕРМАЛЬНОГО ФАКТОРА РОСТА НА ПОКАЗАТЕЛИ ВРОЖДЕННОГО ИММУНИТЕТА ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ ТЕРМИЧЕСКОЙ ТРАВМЕ

Лихачева А.Г., Осиков М.В., Телешева Л.Ф. ГБОУ ВПО «Челябинская государственная медицинская академия» Минздравсоцразвития России, Челябинск, e-mail: lichachvaa@mail.ru

Эпидермальный фактор роста (ЭФР) с успехом локально применяется у больных с термической травмой (ТТ), Один из механизмов протекторного действия ЭФР может быть связан

с его влиянием на показатели врожденного иммунитета. Цель работы – исследовать состояние врожденного иммунитета при экспериментальной термической травме в условиях локального применения эпидермального фактора роста.

Материалы и методы исследования. Работа выполнена на 30 белых нелинейных крысахсамцах массой 200-220 г., случайным образом разделенных на 3 группы: І группа — интактные, ІІ группа — модель ТТ, ІІІ группа — животные с ТТ, у которых локально применяли ЭФР. ТТ кожи ІІІА степени с площадью ожога 4% моделировали контактом в течение 30 с с плоскодонным стеклянным стаканом диаметром дна 4 см, наполненным водой с температурой 100°С.

ЭФР применяли в составе препарата «Эбермин» (Центр Генной Инженерии и Биотехнологии, Куба) нанесением на рану 1 раз в сутки в течение 14 дней. Животным II группы на рану наносился препарат «Сульфаргин» (Таллиннский фармацевтический завод). В периферической крови на 1, 3, 7, 14, 28 сутки от термической травмы определяли количество лейкоцитов и лейкоцитарную формулу. Поглотительную способность фагоцитов периферической крови исследовали с использованием частиц монодисперсного полистерольного латекса с вычислением активности фагоцитоза (АФ) и интенсивности фагоцитоза (ИФ), киллинговую способность - в спонтанном и индуцированном теста восстановления нитросинего тетразолия (НСТсп и НСТинд).

Результаты исследования. При экспериментальной TT в периферической крови на 3-14 сутки наблюдения фиксируется нейтрофильный лейкоцитоз и лимфоцитопения, а также активация киллинговой и поглотительной способностей фагоцитов. Так, на 3 сутки наблюдения общее количество лейкоцитов увеличилось на 132% ($19,36 \pm 1,84 \cdot 10^9/\pi$; у интактных $8,34 \pm 0.98 \cdot 10^9$ /л; p < 0.001) преимущественно за счет палочкоядерных $(1.82 \pm 0.29 \cdot 10^9/\pi)$; у интактных $0.27 \pm 0.06 \cdot 10^9 / \pi$; p < 0.001) и сегментоядерных $(10.89 \pm 1.04 \cdot 10^9/\pi)$; у интактных $3.06 \pm 0.39 \cdot 10^9 / \pi$; p < 0.001) нейтрофилов. Нейтрофильный лейкоцитоз в периферической крови сохранялся на 7 сутки ТТ, в это же время снижалось количество лимфоцитов $(3.40 \pm 0.54 \cdot 10^9/\pi)$; у интактных $4.16 \pm 0.49 \cdot 10^9/\pi$;

На 14 сутки выраженность лимфоцитопении нарастала, количество лимфоцитов снижалось на 33% от значений контрольной группы $(2,79 \pm 0,29 \cdot 10^9 / \pi; \ p < 0,01) -$ это минимальный уровень лимфоцитов в периферической крови за весь период наблюдения. К 21 суткам эксперимента количество лейкоцитов в крови не отличалось от группы интактных, при этом сохранялась нейтрофилия за счет палочкоядерных форм. На 28 сутки ТТ количественный состав лейкоцитов в крови возвращался к уровню интактных животных. На 3 и 7 сутки наблюдался динамичный подъем показателей фагоцитоза. Так, на 7 сутки % клеток, захвативших хотя бы одну частицу латекса, увеличился в 1,3 раза $(74,25 \pm 2,97\%;$ y интактных $31,23 \pm 2,76\%;$ p < 0.001), а количество захваченных частиц латекса одним фагоцитом - в 1,06 раза по сравнению с контрольной группой $(4,59 \pm 0,63 \text{ y.e.};$ у интактных $2,23 \pm 0,13$ у.е.; p < 0,001). На 14 сутки поглотительная способность фагоцитов снижалась при сравнении с 3 и 7 сутками, но оставалась повышенной при сравнении с интактными животными. К 21 суткам наблюдения АФ возвращалась к уровню интактных животных, но ИФ оставалась повышенной, на

28 сутки количество активно поглощающих фагоцитов, а также количество частиц латекса, поглощенных одним фагоцитом статистически значимо не отличалось от контрольной группы.

Локальное применение ЭФР при экспериментальной ТТ приводит к уменьшению выраженности в периферической крови нейтрофильного лейкоцитоза и коррекции лимфоцитопении, более раннему восстановлению функциональной активности фагоцитов. Первые значимые изменения обнаружены на 3 сутки, когда снижалось количество в крови сегментоядерных нейтрофилов $(6,65 \pm 0,62 \cdot 10^9/\pi)$; в контроле $10.89 \pm 1.04 \cdot 10^9 / \pi$; p < 0.001) и общее количество нейтрофилов $(7.83 \pm 0.73 \cdot 10^9/\pi)$; в контроле $12,70 \pm 1,29 \cdot 10^9 / \pi$; p < 0,001), кроме того увеличивалось относительное содержание лимфоцитов в лейкоформуле $(41,11 \pm 2,74\%)$; в контроле $28,63 \pm 1,99\%$; p < 0,001). На 7 сутки наблюдения в периферической крови снижалось общее количество лейкоцитов $(8.74 \pm 0.56 \cdot 10^9/\pi)$; в контроле $15,30 \pm 2,96 \cdot 10^9 / \pi$; p < 0,001) за счет палочкоядерных $(0.46 \pm 0.09 \cdot 10^9/\pi)$; в контроле $2,09 \pm 0,66 \cdot 10^9$ /л; p < 0,001) и сегментоядерных $(4.08 \pm 0.39 \cdot 10^9/\pi)$; в контроле $8.82 \pm 1.68 \cdot 10^9/\pi$; p < 0.001) нейтрофилов. На 14 сутки после экспериментальной ТТ отмечено снижение представительства нейтрофилов за счет сегментоядерных форм $(4.88 \pm 0.71 \cdot 10^9/\pi)$; в контроле $6.95 \pm 0.64 \cdot 10^9 / \pi$; p < 0.001), а также значимое увеличение количества лимфоцитов $(4,64 \pm 0.39 \cdot 10^9/\pi)$; в контроле $2,79 \pm 0.29 \cdot 10^9/\pi$; p < 0.001). Локальное применение ЭФР не оказывало влияния на количественный состав лейкоцитов и их популяций в крови на 21 и 28 сутки после ТТ. Через 3 суток после ТТ обнаружено статистически значимое снижение поглотительной активности фагоцитов: уменьшалась АФ $(59,00 \pm 3,29\%)$; в контроле $74,25 \pm 2,97\%$; p < 0.001) и ИФ (3.32 ± 0.27 у.е.; в контроле $4,59 \pm 0,63$ у.е.; p < 0,01), при этом, отмеченные показатели не достигали уровня интактных животных и продолжали оставаться повышенными. В это же время, снижался HCTcп ($18,80 \pm 2,94\%$; в контроле $26,75 \pm 2,62\%$; p < 0,01), но функциональный резерв фагоцитов, оцениваемый в НСТинд, не изменялся НСТсп (22,44 \pm 1,34%; в контроле $20,25 \pm 2,95\%$; p < 0,01). На 7 сутки ТТ поглотительная способность фагоцитов у крыс опытной группы также снижалась, причем ИФ достигала значений в группе интактных животных. До уровня интактных животных снижалась активность НСТсп, что отражает восстановление способности фагоцитов к генерации АФК, впрочем, активность НСТинд продолжала оставаться сниженной. Через 14, 21 и 28 суток после индукции TT при локальном использовании ЭФР поглотительная и киллинговая способности фагоцитов полностью восстанавливались и не отличались от соответствующих показателей в группе интактных животных.

В целом, полученные результаты свидетельствуют, что локальное применение ЭФР приводит к более раннему восстановлению количественного состава и функциональной активности фагоцитов. Изменение АФ, НСТсп и НСТинд может быть обусловлено падением количества нейтрофилов в периферической крови - основной по количественному составу популяции фагоцитов. Нами обнаружены положительные связи между количеством нейтрофилов в крови и активностью фагоцитоза на 3 сутки (R = 0.39; p < 0.05), 7 сутки (R = 0.54; p < 0.05)и 14 сутки (R = 0.46; p < 0.05) после TT, а также между количеством нейтрофилов в крови и НСТсп на 3 сутки (R = 0.31; p < 0.05), 7 сутки (R = 0.37; p < 0.05) и 14 сутки (R = 0.48; p < 0.05)после ТТ. В тоже время, изменение интенсивности НСТ-теста и ИФ свидетельствует о модуляции функциональной активности отдельного фагоцита и отражает снижение стимуляции клеток в ответ на медиаторы воспаления или контакт с поврежденной, а также чужеродной поверхностью. Полагаем, что отмеченные эффекты являются следствием ограничения масштабов альтерации в очаге повреждения и как следствие снижения стимулирующего влияния аутокоидов на миелоидный росток костного мозга, циркулирующие фагоциты и другие мишени в ходе ответа острой фазы.

Таким образом, при экспериментальной ТТ локальное применение ЭФР приводит к снижению выраженности нейтрофильного лейкоцитоза, коррекции лимфоцитопении, снижению поглотительной и спонтанной киллинговой активности фагоцитов на 3–14 сутки наблюдения. Полученные данные расширяют современные представления об иммунорективности организма при ТТ, а также сведения о механизме локального действия ЭФР в очаге ТТ и являются предпосылкой для разработки в комбустиологии новых лекарственных форм как ЭФР, так и других эндогенных иммуномодуляторов.

ДИФФЕРЕНЦИРОВАННЫЙ АЛГОРИТМ ЛЕЧЕНИЯ ДЕТЕЙ С ПЕРВИЧНЫМ НОЧНЫМ ЭНУРЕЗОМ

Нестеренко О.В., Горемыкин В.И., Елизарова С.Ю., Сидорович О.В. ГОУ ВПО «Саратовский ГМУ им. В.И. Разумовского», Саратов, e-mail: ronikia@gmail.com

Цель работы: разработка алгоритма дифференцированной терапии детей с первичным ночным энурезом (ПНЭ), адаптированного к общепедиатрическим лечебно-профилактическим учреждениям.

Материалы и методы. В ходе работы были обследованы 234 ребенка 5–15 лет, из них

с ПНЭ 198 детей и 36 здоровых детей, составивших контрольную группу.

Результаты работы. Показания к включению тех или иных средств и методов лечения, т.е. формирование индивидуальных алгоритмов терапии, представлены в табл. 1. Физиотерапевтическое лечение подбиралось каждому ребенку индивидуально в зависимости от диагностированной дисфункции нижних мочевых путей и типа вегетативной дистонии. [1, 3, 7]. Назначение М-холинолитиков (дриптан, спазмекс) проводилось только детям с выявленным гиперрефлекторным и/или недаптированным мочевым пузырем [4, 6]. В качестве одного из компонентов комплексной программы лечения ноотропные препараты целесообразно назначать детям с объективно выраженной ММД. Коррекция психовегетативных нарушений у детей проводилась в форме рациональной и семейной психотерапии и носила сугубо индивидуальный характер [2, 8].

Первую контрольную группу составили дети, которые получали терапию в условиях амбулаторно-поликлинических учреждений. Вторая контрольная группа была составлена из узкой категории детей, лечение которым удалось приблизить к объему терапии, рекомендованному в стандарте.

Оценка результатов лечебной программы производилась через 2 и через 6 мес. Катамнестическое наблюдение за детьми длилось 1,5-3 года. Лучший клинический результат (выздоровление – у 73,1% и улучшение – у 19,4%) мы получили у детей, которым проводили комплекс рекомендуемых мероприятий – психологическое консультирование, рациональную и семейную психотерапию, медикаментозную коррекцию, физиотерапию и лечебную гимнастику, мочевой будильник, причем этот комплекс применялся нами дифференцированно, т.е. в зависимости от выявленных нарушений. Лечение этим детям осуществлялось в соответствии с разработанным нами алгоритмом. Несколько ниже была эффективность лечения у тех детей, терапия которых была максимально приближенной к стандарту, однако без учета индивидуальных особенностей каждого ребенка. Так, выздоровление было отмечено у 55,6% детей, улучшение - у 22,2%. Самыми низкими были результаты лечения детей в амбулаторно-поликлинических условиях с использованием не более 3 методов из рекомендуемых (выздоровление у 35% детей, улучшение – у 20% и отсутствие эффекта - y 45%).

Заключение. Индивидуальную лечебную программу с обязательным включением alarmcontrol ребенку с ПНЭ следует подбирать после выполнения рекомендуемого комплекса диагностических мероприятий и в зависимости от выявленных нарушений составлять алгоритм лечения. Основной задачей при этом являет-