УДК 630*811.112

ВРЕМЯ РАСПРОСТРАНЕНИЯ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ ЧЕРЕЗ КОНУСНЫЕ НАСАДКИ В ОБРАЗЦЕ ИЗ ДРЕВЕСИНЫ ЕЛИ В ТАНГЕНЦИАЛЬНОМ НАПРАВЛЕНИИ

Темнова Е.Б.

Марийский государственный технический университет, Йошкар-Ола

Эффективность применения способа неразрушающего ультразвукового испытания древесных изделий с неплоскими поверхностями, в частности по нашему патенту 2334984 на изобретение, во многом зависит от конусных насадок на датчики излучателя и приемника ультразвукового прибора. Предлагаемая методика позволит выявить закономерности изменения показаний ультразвукового прибора «Пульсар-1.0» в зависимости от размеров конусных насадок различной формы и размеров, на стандартном образце ели $300\times20\times20$ мм в тангенциальном направлении. В этом случае длина пути, проходимого ультразвуковыми колебаниями (УЗК) равна 20 мм.

Ключевые слова: древесина, ультразвук, тангенциальное направление

Эффективность применения способа неразрушающего ультразвукового испытания древесных изделий с неплоскими поверхностями, в частности по нашему патенту 2334984 на изобретение [1], во многом зависит от конусных насадок на датчики излучателя и приемника ультразвукового прибора. Предлагаемая в статье методика позволит выявить закономерности изменения показаний ультразвукового прибора «Пульсар-1.0», в зависимости от размеров конусных насадок различной формы и размеров, на стандартном образце ели 300×20×20 мм в тангенциальном направлении. В этом случае длина пути, проходимой ультразвуковыми колебаниями (УЗК) равна 20 мм.

Стандартный датчик от прибора «Пульсар-1.0» показан под № 0. Он имеет плоскую форму и угол 180°. Для неплоских поверхностей образца соприкосновение должно быть точечным. Поэтому была принята конусная насадка № 1 (рис. 1) с цилиндрическим переходом длиной 32,4 мм и углом 42° общей длиной 82,4 мм.

Затем в насадке № 2, для снижения погрешности у времени прохождения ультразвуковых колебаний (УЗК), цилиндрический участок был исключен с оставлением первоначального угла острия конусной насадки в 42°. При этом уменьшается длина самой насадки до 47,4 мм.

У конусной насадки № 3 сокращена длина до 34,9 мм с переходом острия на 4,0 мм от угла 57 град к начальному углу 42 град. Для дальнейшего уменьшения длины насадки № 4 до 22,9 мм, с сохранением угла 42 град, пришлось выполнить резкий переход от конуса длиной 4,0 мм на наконечнике насадки на угол 81 град. При этом глубина проникновения острия в испытываемый материал будет фиксированной, но такой переход приводит к преломлению УЗК. В попытках максимального снижения возможных потерь времени УЗК у конусной насадки принимается криволинейный переход к форме № 5.

Измерения проводились в тангенциальном направлении при трех повторах на ультра-звуковом приборе «Пульсар-1.0» и использовании набора конусных насадок на пьезоэлектрические датчики у излучателя и приемника (табл. 1 и рис. 1).

Время t (микросекунды) прохождения УЗК через образец из древесины ели измерялось трижды. В табл. 2 представлены результаты измерений по всем 36 сочетаниям из шести пар конусных насадок у излучателя и приемника. На рис. 2 представлены двухфакторные изображения изменения времени прохождения УЗК.

График № 1 показывает влияние на время прохождения УЗК при постоянной

Таблица 1 Характеристики применяемых конусных насадок

Управляемые параметры		Примечания по особенностям	
Длина насадки L , мм	Угол конуса ф, град	конструкции консуной насадки	
0,0	180	0. Стандартный от прибора Пульспр-1.0	
82,4	42	1. Цилиндрический переход 32,4 мм	
47,4	42	2. Переход 0,0 мм	
34,9	42	3. Переход от конуса 4,0 мм на 57 град	
22,9	42	4. Переход от конуса 4,0 мм на 81 град	
22,9	42	5. Криволинейный переход до основания	

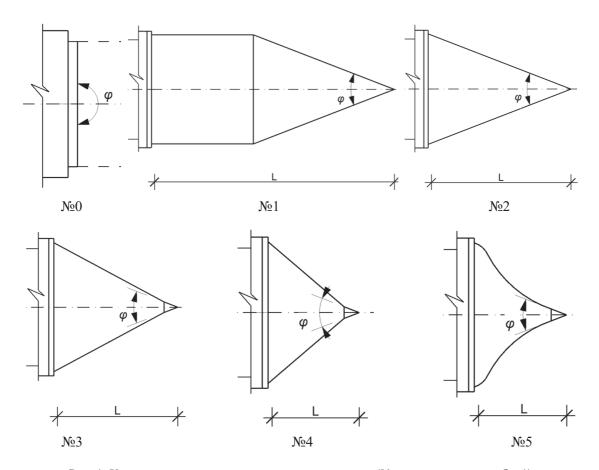


Рис. 1. Конусные насадки на излучателе и приемнике (№ конструкции по табл. 1)

плоской форме приемника при изменении параметров излучателя. Влияние на время прохождение УЗК при постоянной плоской форме приемника и при постоянном угле 42°, но разной формы у конусных насадок излучателя, показано на графике № 2. в сравнении с продольным направлением волокон влияние угла конуса малое.

На картинке № 3 показано влияния на время при плоской форме излучателя, но при изменении формы и угла насадки у приемного излучателя. Поверхность № 4 — влияние на время прохождения УЗК при постоянной плоской форме излучателя и постоянном угле 42° , но при разной форме у конусных насадок приемника.

Таблица 2 Время прохождения УЗК, мкс

Излуча-	Приемник							
тель	№ 0	№ 1	№ 2	№ 3	№ 4	№ 5		
№ 0	23,0	34,2	28,1	25,8	24,4	24,4		
	22,9	34,1	28,1	25,9	24,3	24,4		
	22,9	34,2	28,2	25,8	24,4	24,4		
№ 1	34,5	48,3	41,5	39,0	60,6	37,4		
	34,5	48,2	41,5	38,9	60,2	37,3		
	34,6	48,3	41,5	39,0	60,3	37,4		
№ 2	28,8	41,4	34,6	33,2	32,2	31,1		
	28,9	41,3	34,6	33,1	32,1	31,0		
	28,8	41,3	34,6	33,2	32,2	31,0		
№ 3	27,0	38,6	33,6	31,3	29,7	28,4		
	26,9	38,5	33,6	31,3	29,7	28,6		
	27,0	38,6	33,7	31,3	29,6	28,5		
№ 4	26,2	38,1	31,9	29,7	32,2	27,9		
	26,1	38,0	32,0	29,6	32,2	28,0		
	26,2	38,1	31,9	29,7	32,0	27,9		
№ 5	28,6	37,6	31,9	47,1	28,6	27,4		
	28,5	37,6	32,0	47,1	28,5	27,5		
	28,5	37,8	32,0	47,3	28,4	27,4		

График № 5 на рис. 2 был построен при одинаковой форме и угле 42° конусных насадок на приемнике и излучателе. На графике № 6 представлено двухфакторное изображение влияния на показатель при одинаковой форме и углах конусных насадок на приемнике и излучателе, включая плоскую пару.

Таким образом, оказалось, что форма конусной поверхности почти не влияет на изменение времени прохождения УЗК через стандартный образец из древесины ели в тангенциальном направлении. Однако, здесь может быть влияние масштабного фактора. Поэтому нужны дополнительные

эксперименты, Кроме того, следует учитывать, что в древесиноведении испытания в тангенциальном направлении вообще не поводятся. Новые эксперименты могут привести к интересным закономерностям прохождения УХК по годичным слоям древесины, в особенности в растущем состоянии.

В дальнейшем по данным из табл. 2 были получены формулы влияния каждого из учтенных факторов конусных наконечников (длины, угла, кода поверхностной формы в зависимости от расположения их на излучателе и приемнике) на изменение времени t прохождения УЗК по биотехническому закону [2] (рис. 3), мкс:

- от длины излучателя

$$t = 27,46402\exp(0,003633L_u);$$
 (1)

- от длины приемника

$$t = 28,10758\exp(0,011194 L_{_{\Pi}});$$
 (2)

- от угла конуса, град, у излучателя

$$t = 37,46455 \exp(-0.0018974 \varphi_{\mu});$$
 (3)

- от угла конуса, град, у приемника

$$t = 36,52453 \exp(-0,0014777\varphi_{\Pi});$$
 (4)

– от формы поверхности конуса у излучателя

$$t = 33,21667 \exp(0,00981951 i_{\mu});$$
 (5)

- от формы поверхности конуса у приемника

$$t = 34,036667 \exp(-0.14493i_{\Pi}).$$
 (6)

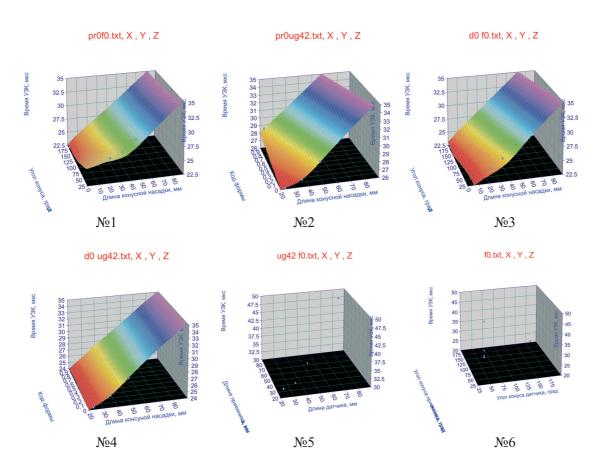


Рис. 2. Пространственные графики влияния формы и параметров насадки на время прохождения УЗК

Из рис. 3 по графикам видно, что изменение времени УЗК от длины конусных насадок самое большое и коэффициент корреляции при изменении длины конусных насадок у излучателя равен r = 0,651,

а у приемника r=0,456. Следовательно между этими параметрами имеется средняя теснота связи. При этом обращает на себя внимание достаточно высокая разница между насадками на изучателе и при-

емнике. Кроме того, на длинных насадках приемника УЗК меньше разброс точек по сравнению с излучателем.

От угла конусных насадок коэффициент корреляции равен у излучателя r=0,394, у приемника r=0,314, поэтому у этих показателей факторная связь слабее. Форма

поверхности конусных насадок практически не дает влияния — коэффициент корреляции меньше 0,3. По данным рис. 3 (в правом верхнем углу) время прохождения УЗК в образце из древесины ели в тангенциальном направлении волокон имеет очень слабую связь: у излучателя r = 0,016,

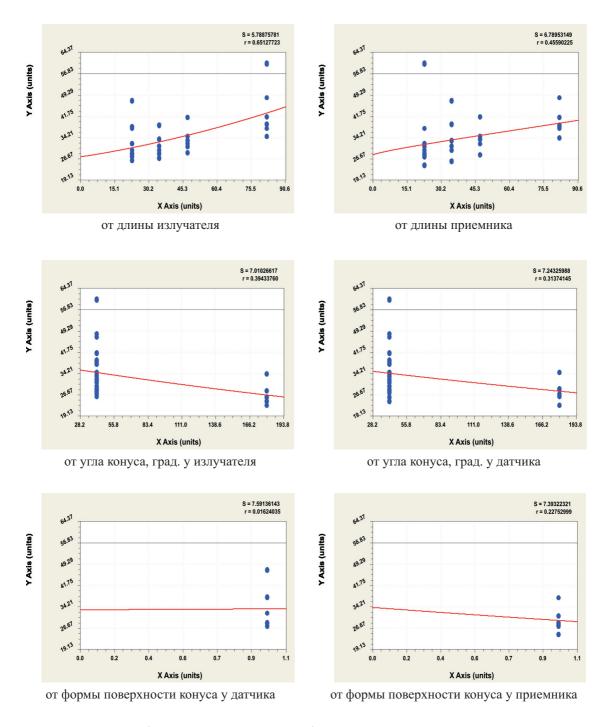


Рис. 3. Графики влияния длины, угла и формы поверхности конусных насадок на время УЗК (в правом верхнем углу графиков показаны сумма квадратов отклонений и коэффициент корреляции)

и у приемника -r=0,228. Но здесь также заметна достаточно значимая разница между конусными насадками на излучателе и приемнике.

Для сертификации древесины в виде образцов неплоской формы, например, поленьев по патенту № 2334984 [1], оказалось удобным угол конуса в 42°. При тупом угле

не удается контактировать конусной насадкой в заданной точке бесформенного образца, а при меньшем угле заострения снижается прочность наконечника конуса.

Удобнее применять два одинаковых насадка на обоих датчиках (излучателе и приемнике). В табл. 3 приведены данные измерений времени УЗК.

Таблица 3 Время прохождения УЗК, мкс

Излуча-	Приемник							
тель	№ 0	№ 1	№ 2	№ 3	№ 4	№ 5		
№ 0	23,0							
	22,9							
	22,9							
№ 1		48,3						
		48,2						
		48,3						
№ 2			34,6					
			34,6					
			34,6					
№ 3				31,3				
				31,3				
				31,3				
№ 4					32,2			
					32,2			
					32,0			
№ 5						27,4		
						27,5		
						27,4		

Сравнение пар по трем повторам показывает, что наибольшее время затрачивается при применении насадки № 1, а с изменением формы и размеров от формы № 2 до № 5 время УЗК уменьшается, получая сильное волновое возмущение. Этот факт снова указывает на то, что тангенциальное направление волокон древесины имеет масштабный фактор и поэтому следует установить минимальные длины образцов поленьев по ширине. В этой же табл. 3 выделены показания прибора «Пульсар-1.0» со стандартными датчиками № 0 и с конус-

ными наконечниками на них второго ранга, то есть излучатель и приемник № 2. Эта конструкция, как видно из чертежей на рис. 1, простая в изготовлении.

Среднее время УЗК будет равно для датчика № 0 (23,0 + 22,9 + 22,9)/3 = 22,93 мкс, а эти же датчики с насадками № 2 – (34,6 + 34,6 + 34,6)/3 = 34,60 мкс. Разница между ними составит 34,60 - 22,93 = 11,67 или округленно 11,7 мкс. Тогда потери времени на прохождение через две одинаковых конусные насадки № 2, при испытании древесины вдоль волокон, будет рав-

но 11,7 мкс. Но в дальнейшем нужно будет еще учесть и масштабный фактор в зависимости от пути прохождения УЗК в тангенциальном направлении волокон древесины в различных состояниях.

СПИСОК ЛИТЕРАТУРЫ

1. Пат. 2334984 Российская Федерация, МПК G01N33/46 (2006.01). Способ ультразвукового испытания поленьев резонансной древесины / Мазуркин П.М., Темнова Е.Б.

(РФ); заявитель и патентообладатель Марийск. гос. тех. ун-т. – №2006126506/12; заявл. 20.07.2006; опубл. 27.09.2008.

2. Мазуркин, П.М. Математическое моделирование. Идентификация однофакторных статистических закономерностей: Учебное пособие / П.М. Мазуркин, А.С. Филонов. – Йош-кар-Ола: МарГТУ, 2006. – 292 с.

Статья подготовлена и опубликована при поддержке гранта 3.2.3/4603 MOH РФ

TIME OF ULTRASONIC THROUGH CONE NOZZLES IN THE SAMPLE FROM FIR WOOD IN THE TANGENTIAL DIRECTION

Temnova E.B.

Mari State Technical University, Yoshkar-Ola

Effectiveness of the method of ultrasonic nondestructive testing of wood products with curved surfaces, particularly on our patent 2334984 for an invention depends on the conical nozzle sensor-transmitter and receiver of the ultrasonic device. This methodology will identify patterns of change in the testimony of the ultrasonic device «Pulsar-1.0», depending on the size of cone nozzles of various shapes and sizes, a standard sample were eating $300 \times 20 \times 20$ mm in the tangential direction. In this case the length of the path traversed by the ultrasonic vibrations (CPO) is equal to 20 mm.

Keywords: wood, ultrasound, tangential direction