РОЛЬ ЭНДОТЕЛИАЛЬНОЙ NO-СИНТЕТАЗЫ В ДИСФУНК-ЦИИ МИОКАРДА

Парахонский А.П.

Медицинский институт высшего сестринского образования Краснодар, Россия

Оксид азота (NO) принимает активное участие в регуляции сосудистого тонуса и кровотока, уровня артериального давления, системной и регионарной гемодинамики. Он обладает антиоксидантными свойствами, препятствует патогенным влиянием липопротеинов низкой плотности, регулирует потребление кислорода сосудистой стенкой. Ряд данных указывает на снижение экспрессии эндотелиальной NO-синтетазы (eNOS) и уровня NO при ишемической болезни сердца (ИБС), а также возникающей при реперфузионных поражениях миокарда сердечной недостаточности. На понижение уровня NO при ИБС указывает и менее выраженное сужение коронарных сосудов у больных ИБС и с сердечной недостаточностью в ответ на введение им ингибитора NO-синтетазы.

Роль дефицита NO в патогенезе ИБС и благоприятный эффект повышения его уровня показаны в исследованиях с клопидогрелом, вызывающим блокаду аденозинфосфатных рецепторов в тромбоцитах. Показано, что блокада реаденозинфосфата цепторов клопидогрелом улучшает эндотелин(NO)-зависимую вазодилятацию, вызываемую ацетилхолином, повышает уровень NO у больных ИБС, тормозит воспаление сосудов и развитие оксидантного стресса. Продукция свободных радикалов кислорода увеличивается в миокарде и коронарных артериях больных ИБС, что ведёт к торможению экспрессии и активности eNOS, понижению синтеза и содержания NO в эндотелиальных клетках (ЭК), вызывая их дисфункцию. Назначение больным ИБС антиоксидантов подавляет образование свободных радикалов кислорода, восстанавливает пониженный уровень NO, дилатацию коронарных сосудов, улучшает кровоток в них.

Снижению уровня NO при ИБС может способствовать и резко пониженная чувствительность eNOS к одному из главных факторов регуляции её активности — продвижению крови вдоль эндотелия сосудов. Содержание NO в ЭК зависит от эндогенных ингибиторов NOS, главным образом от несимметричного диметиларгинина, активность которого повышена при ИБС и других болезнях сердца и сосудов. К этому приводит и наблюдаемое у больных ИБС повышение уровня аргиназы — фермента, разрушающего L-аргинин, который является субстратом для NOS и существенно влияет на функцию миокарда. Большое значение имеет пониженный транспорт L-аргинина у больных ИБС, особенно выраженный при сердечной недостаточности. При атеросклерозе, играющем важную роль в патогенезе ИБС, к снижению NO в ЭК может привести уменьшение уровня одного из главных кофакторов NOS - тетрагидробиопрерина, повышение содержания липопротеидов низкой плотности, реактивных форм кислорода, гиперхолестеринемия. Генетические вариации eNOSгена, понижающие биосинтез и содержание NO в ЭК, существенно повышают чувствительность организма к атерогенным факторам и возникновению ИБС. Гипергомоцистеинемия является независимым фактором риска ИБС, что связано одним из вариантов полиморфизма eNOS-гена, который обнаружен у таких больных. Принято считать, что в физиологических условиях ЭК могут модифицировать неблагоприятные эффекты гомоцистеина, выделяя NO, который облегчает образование S-нитрозоцистеина.

Таким образом, при снижении уровня NO образуются уменьшенные количества S-нитрозоцистеина, что подвергает систему гомеостаза патогенным эффектам гомоцистеина. Генетически обусловленная недостаточность NO оказывает существенное влияние на эмбриональное развитие сердца в связи с важной ролью NO в регуляции роста клеток и апоптоза.

РЕГУЛЯТОРНО-АДАПТИВНЫЙ СТАТУС И СТРЕССОУСТОЙЧИВОСТЬ

Пухняк Д.В., Патахов П.П., Мингалев А.Н., Дельянов К.В., Бондина В.М., Дробышева О.М., Абушкевич В.Г.

Кафедра мобилизационной подготовки здравоохранения и медицины катастроф Кубанского государственного медицинского университета, Краснодар, Россия

Уровень стрессоустойчивости у 58 студентов, 35 начинающих парашютистов и 30 начинающих спасателей был определен по динамике регуляторно-адаптивного статуса, определяемого по параметрам пробы сердечно-дыхательного синхронизма. В качестве параметров пробы использовали: диапазон синхронизации, длительность развития синхронизации на минимальной границе диапазона, индекс регуляторноадаптивного статуса. По сопоставлению пара-

метров сердечно-дыхатель-ного синхронизма в исходном состоянии и при действии стрессорного фактора (экзамен для студентов; прыжок с парашютом для парашютистов; направление в зоны чрезвычайных ситуаций для спасателей) все обследуемые были разбиты на три группы. Принципами деления на группы явилось: для лиц с высоким уровнем стрессоустойчивости отсутствие динамики параметров сердечнодыхательного синхронизма в ответ на стрессорный фактор и высокие регуляторно-адаптивные возможности, оцениваемые по индексу регуляторно-адаптивного статуса; для лиц с умеренным уровнем стрессоустойчивости - понижение регуляторно-адаптивных возможностей до удовлетворительных; для лиц с низким уровнем стрессоустойчивости - понижение регуляторноадаптивных возможностей до низких. Одновременно уровни стрессоустойчивости определялись психологическими методами. Сопоставление определения уровней стрессоустойчивости по параметрам пробы сердечно-дыхательного синхронизма и определением их психологическими методами показало, что результаты пробы сердечно-дыхательного синхронизма оказались точнее, чем данные психологического тестирования.

РАЗРАБОТКА СТРУКТУРЫ ИНФОРМАЦИОННОЙ СИСТЕМЫ ОЦЕНКИ ИНТЕГРАЛЬНОГО ПОКАЗАТЕЛЯ ЗДОРОВЬЯ

Пятакович Ф.А., Якунченко Т.И., Макконен К.Ф.

ГОУ ВПО «Белгородский государственный университет»,

Актуальность работы

Общий уровень адаптации обеспечивают многие функциональные системы организма за счет мобилизации резервов: сердечно-сосудистой и дыхательной систем, энергетического и резерва защиты. Осуществляется адаптация на фоне той или иной степени психоэмоциональной окраски, иначе говоря, уровня душевного комфорта.

Оценка уровня здоровья по сумме резервных мощностей может проводиться не только в стационаре, но и в амбулаторных условиях, в экспресс-режиме, когда резерв определяется по разнице между характеристикой функции в покое по сравнению с должной величиной. Оптимальным вариантом является разработка стандартных и легко выполнимых нагрузочных тестов, когда резерв определяется по разнице между параметром функции в покое и после нагрузки. При этом подходе может использоваться балльная оценка по специальной табли-

це для определения суммарного показателя резервных мощностей, или интегрального показателя здоровья [3].

Оценка инотропного и хронотропного резерва организма позволяет определить показатель качества реакции. Показатель устойчивости организма к кислородной задолженности зависит в основном от работы сердечно-сосудистой и дыхательной систем.

Уменьшение показателя свидетельствует о возрастании резерва, а его увеличение, напротив, отражает снижение функций сердечнососудистой и дыхательной систем. Если естественная задержка дыхания после неглубокого выдоха (пока приятно) достигает 40-60 секунд, это значит, что соотношения кислорода и углекислого газа в организме в пределах нормы [4].

Актуальность разработки автоматизированной системы классификации интегрального показателя здоровья не вызывает сомнений, поскольку является важной дополнительной функциональной характеристикой к диагнозу. У здоровых людей определение уровня здоровья, связано с возможностью оценки эффективности проводимого биоуправляемого игрового тренинга [1, 2].

Работа выполнена при поддержке проекта РНПВШ.2.2.3.3/4307 и в соответствии с планами проблемной комиссии по хронобиологии и хрономедицине РАМН и научным направлением медицинского факультета БелГУ «Разработка универсальных методологических приемов хронодиагностики и биоуправления на основе биоциклических моделей и алгоритмов с использованием параметров биологической обратной связи».

Целью исследования является оптимизация диагностики успешности и эффективности биоуправляемого игрового тренинга.

Задачи исследования включают разработку:

- датчика ввода сигналов пульса и дыхания в ЭВМ посредством USB-порта;
- модели интегрального показателя здоровья включающей уровень душевного комфорта, показатели инотропного, хроноропного, дыхательного резервов и иммунной защиты организма;
- алгоритма классификации интегрального показателя здоровья на основе вычисления функциональных резервов физиологических систем организма.

Методы исследования базируются на использовании основных положений системного анализа, теории управления в медицине, моделирования, теории вероятностей и математической статистики, Использованы методы системотехнического анализа и конструирования, а также математико-кибернетические методы их решения.

Основное содержание работы

Современная компьютерная техника, как правило, выпускается без СОМ-портов для