Перспективным способом переработки низкосортных рыбных жиров является получение из них посредством ферментативного гидролиза жирных кислот для технических целей. Данный способ не требует сложного технологического оборудования и больших энергозатрат. Рентабельность процесса может быть обеспечена за счет использования ферментного препарата без глубокой очистки и создание условий его оборотного использования путем иммобилизации.

Использование панкреатической липазы в свободном и иммобилизованном состоянии (иммобилизацию осуществляли на поливиниловом спирте) при гидролизе низкосортного рыбного жира невысокую активность ферментных препаратов по отношению к субстрату. Однако введение в реакционную смесь стимулирующих веществ (соответственно, желчных солей и хлорида кальция) позволило значительно увеличить активность как свободной, так и иммобилизованной липазы. При этом иммобилизованный фермент сохранял свои свойства В течение 90 циклов. В процессе гидролиза кислотное число жира удалось повысить с 60 до 170...180 мгКОН/г.

Полученные в результате ферментолиза жирные кислоты отделяли от водной фазы, а затем успешно апробировали в качестве исходного сырья при изготовлении технических продуктов: стабилизатора эмульсионной системы, солевой олифы, антиадге-

зионной смазки, флотационного реагента и антифрикционной присадки.

Таким образом, жировые отходы рыбоперерабатывающих производств и низкосортные рыбные жиры можно рассматривать в качестве вторичных сырьевых ресурсов - источника полиненасыщенных жирных кислот, которые находят применение в качестве пленкообразующих, поверхностно-активных и антифрикционных веществ для различных отраслей промышленности.

АНАЛИЗ СТАТИСТИКИ ОТКАЗОВ ЭЛЕКТРОВОЗОВ НА ПРИМЕРЕ КРАСНОЯРСКОЙ ЖЕЛЕЗНОЙ ДОРОГИ

М.Н. Петров, А.И. Орленко, А.В. Лапа

Красноярский институт железнодорожного транспорта Иркутского государственного университета путей сообщения Красноярск, Россия

В данной статье рассмотрен анализ статистических данных отказов локомотивов на примере Красноярской железной дороги.

Совершенствование технологических процессов было и остается одним из решающих направлений единой технической политики ОАО «РЖД», с целью обеспечения безопасности перевозок.

Анализ отказов технических средств показывает, что значительные потери ОАО «РЖД» несет из-за задержек поездов по

причине выхода из строя электрических аппаратов электровозов — около 60% от общего количества. На втором месте по количеству отказов находятся тяговые электродвигатели (ТЭД) — в среднем 14,5% от общего количества. Но особенно имидж

компании страдает из-за проблем, связанных с безопасностью движения, что выражается в значительном количестве отказов колесных пар — около 10% от общего количества отказов (рис. 1).

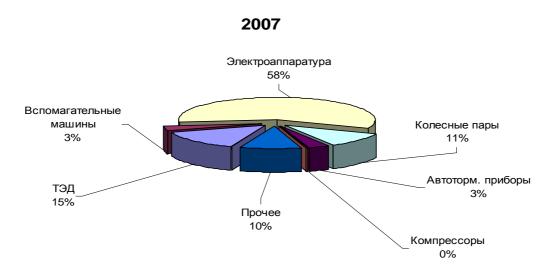


Рис. 1. Круговая диаграмма отказов электровозов парка ОАО «РЖД» по видам оборудования в 2007 году

Колёсная пара – один из важнейших узлов тягового подвижного состава. Взаимодействие колеса и рельса является физичеосновой движения поездов железным дорогам. Именно оно во многом определяет такие важнейшие техникоэкономические показатели, как масса поездов, скорость их движения и уровень эксплуатационных расходов. Поэтому постобольшое оння внимание уделяется повышению технического состояния колёсных пар и увеличению их ресурса до обточки и смены. От исправного состояния

колесных пар зависит безопасность движения поездов.

В 2008 году на Красноярской железной дороге было обточено 9380 бандажей колесных пар электровозов. К основным причинам относятся обточки: по износу гребня, по прокату, по ползунам, по разности диаметров, по остроконечному накату.

В последние годы для повышения износостойкости бандажей колесных пар начали проводить плазменное упрочнение гребня бандажа колесной пары. В 2008 году на Красноярской железной дороге было упрочнено 3293 колесные пары (рис. 2). Это ченных колесных пар за тот же период. почти в три раза меньше количества обто-

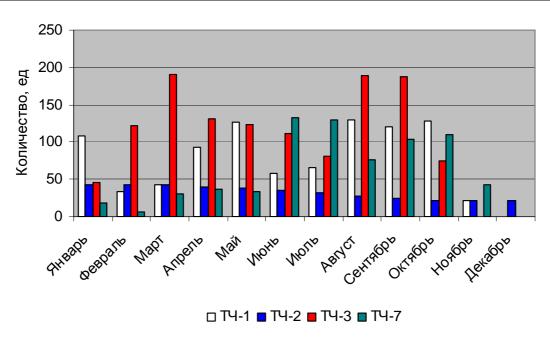


Рис. 2. Гистограмма упрочнений колесных пар электровозов КрасЖД в 2008 году

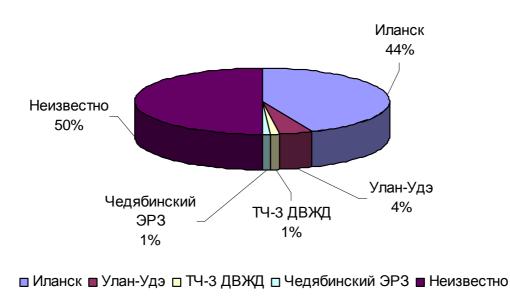


Рис. 3. Круговая диаграмма мест формирования колесных пар с выявленными поперечными трещинами бандажей в депо Боготол

В депо Боготол трещины бандажей были выявлены у 38 локомотивов серии ВЛ80Р, причем у отдельных электровозов поперечные трещины бандажей наблюдались дважды. Всего количество колесных пар с выявленными трещинами составляет 94 елинипы.

На рисунке 3 представлена круговая диаграмма, показывающая долю колесных пар электровозов приписки депо Боготол с выявленными поперечными трещинами бандажей сформированных в разных депо.

Список литературы

1. Данковчев В.Г. Техническое обслуживание и ремонт локомотивов / Учебник для вузов ж.-д. транспорта, Москва, 2007 г. 558 стр.

О НЕКОТОРЫХ НОВЫХ ВОЗМОЖНОСТЯХ АНАЛИЗА ЗАКОНОМЕРНОСТЕЙ В СЛОЖНЫХ СИСТЕМАХ

В.Н. Романенко, Г.В. Никитина, В.В. Корец, А.Н. Морозов

Общие закономерности техники и технологий

Эволюция основное свойство не только Природы. Неоспоримо и что эволюция характеризует и человеческую деятельность. Соответственно эволюция научных взглядов, технических решений и технологических процессов многократно и достаточно хорошо описана. В ряде случаев (см. напр. в теории решения изобретательских задач — ТРИЗ[1]) были выполнены интересные

сравнения эволюции в поле человеческой деятельности и аналогичных явлений в живой природе. Эта область иногда называется эволюцией естественных систем. Однако подробный сравнительный анализ эволюционных процессов в разных областях знания ещё впереди. Очень много в этом плане сделано при использовании понятий синергетики[2]. Тем не менее ещё рано говорить о выявлении наиболее общих закономерностей, описывающих процессы развития в разных системах. В то же самое время необходимость общего анализа ощущается всё более и более остро. При рассмотрении подобных задач зона основного внимания исследователей может существенно сместиться. Действительно, в современной техносфере процессы развития, сопровождаемые её кардинальными преобразованиями, идут очень быстро. В течение жизни одного человеческого поколения легко прослеживается появление многих принципиально новых устройств и технологий. Само их изменение идёт со всё увеличивающейся скоростью[1]. Мобильным телефонам ещё нет и четверти века. За этот небольшой период поколения самих телефонов и стандарты связи сменились уже несколько раз. Достаточно напомнить о новом стандарте мобильной связи 4G (четвёртое поколение). Любому исследователю доступно множество материалов, которые хорошо и подробно описывают техническую ситуацию характер изменений в течение нескольких преды-