Установлено, что в 18 лет у молодых кандидатов и мастеров спорта в составе мембран тромбоцитов отмечается невысокое содержание холестерина и легкое повышение ОФЛ до 0.48 ± 0.014 мкмоль/ 10^9 тр. и 0.46 ± 0.017 мкмоль/ 10^9 тр., соответственно, при уровне соотношения XC/ОФЛ в тромбоцитах 1.04 ± 0.12 . В 22-летнем возрасте данные показатели составили: XC 0.49 ± 0.014 мкмоль/ 10^9

тр., ОФЛ 0.48 ± 0.016 мкмоль/ 10^9 тр., что указывало на постоянство у обследуемых жесткости их мембран.

Таким образом, у молодых кандидатов и мастеров спорта в 18-22 года отмечается стабильность липидного состава мембран тромбоцитов с пониженным содержанием XC и оптимальным уровнем ОФЛ.

Материалы Общероссийских заочных электронных научных конференций

Авиакосмические технологии и оборудование

ЧАСТОТНЫЙ ДАЛЬНОМЕР ПОВЫШЕННОЙ ТОЧНОСТИ С ДОПОЛНИТЕЛЬНОЙ ОБРАБОТКОЙ СИГНАЛА БИЕНИЙ

Аткин И.С.

Волгоградский государственный университет Волгоград, Россия

Измерение дальности с помощью СВЧ дальномеров, использующих непрерывный частомодулированный (ЧМ) сигнал, заключается в измерении приращения частоты излучаемого сигнала за время его прохождения его до цели и обратно $\tau = 2R/c$. В этом случае разность частот излучаемого и отраженного сигнала будет пропорциональна времени задержки τ с коэффициентом пропорциональности, равным «скорости изменения частоты»:

$$f_{\delta} = \tau \frac{df(t)}{dt} = \frac{2R}{c} \cdot \frac{df(t)}{dt} \tag{1}$$

Структурная схема ЧМ-дальномера представлена на рис.1 и состоит из частотного модулятора (1), СВЧ генератора (2), смесителя (3), фильтра низких частот (4), усредняющего счетчика, измеряющего частоту биений (5), передающей (6) и приемной (7) антенн.

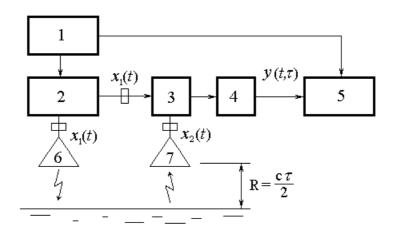


Рис. 1. Типовая структура ЧМ-дальномера

Непрерывный сигнал с генератора 2 излучается передающей антенной 6, поступая также на вход смесителя 3. При отражении излучаемого сигнала от поверхности, до которой измеряется расстояние, через приемную антенну 7 на вход смесителя 3 поступает сиг-

нал $x_2(t) = x_1(t-\tau)$. В смесителе сигналы $x_1(t)$ и $x_2(t)$ перемножаются, а фильтр 4 выделит низкочастотный сигнал разностной частоты.

Для зондирующего сигнала $x_1(t) = A_1 \cos \left[\Phi(t) \right]$ с законом изменения несущей частоты $f(t) = 0.5 \Delta f F(t) + f_0$ ключевыми характеристиками модуляции будут за-

кон модуляции F(t) (пилообразный или синусоидальный), девиация частоты (полоса качания) Δf и период модуляции T_{M} . Здесь где $\Phi(t)$ - полная фаза колебания:

$$\Phi(t) = 2\pi \int_{0}^{t} f(\xi) d\xi \tag{2}$$

Сигнал биений $y(t,\tau) = A\cos\left[\Phi(t) - \Phi(t-\tau)\right]$ обрабатывается измерителем частоты 5, при этом полученное значение согласно (1) пропорционально

дальности R. С учетом малости τ (при расстояниях до 100 м величина τ составляет ~10⁻⁷сек.), используя теорему о среднем, для сигнала биений можно записать выражение:

$$y(t,\tau) = A\cos\left[\pi\Delta f \int_{t-\tau}^{t} F(\xi)d\xi + 2\pi f_0\tau\right] \approx A\cos\left[\pi\Delta f F(t)\tau + 2\pi f_0\tau\right]$$
(3)

Его мгновенная частота в любой момент времени запишется в виде: $\omega_{\delta}(t) = \pi \Delta f \tau F'(t)$. Для симметричного пилообразного закона модуляции средняя за период модуляции T_M частота биений составит:

$$\omega_{\delta} = \frac{\pi \Delta f \tau}{T_{M}} \int_{0}^{T_{M}} F'(t) dt = \frac{4\pi \Delta f \tau}{T_{M}} \int_{0}^{T_{M}} \frac{1}{T_{M}} dt = \frac{4\pi \Delta f \tau}{T_{M}}$$

Аналогичное значение получается и для гармонического закона изменения частоты. Таким образом, частота биений составляет

$$f_{\delta} = \frac{2\Delta f \tau}{T_{M}} \, .$$

С учетом $\tau = 2R/c$, выражение для дальности имеет вид:

$$R = \frac{f_{\sigma} T_{M} c}{4\Delta f} \tag{4}$$

Квазичастота (число переходов через ноль, совершенных сигналом биений за период модуляции) составит $f_{\delta}=N/T_{M}$. Тогда выражение для дальности примет вид:

$$R = \frac{NcT_M}{4\Delta f T_M} = \frac{cN}{4\Delta f}.$$

Дальномер с непрерывной частотной модуляцией будет точно измерять дальность лишь на конкретных расстояниях; в остальных случаях, будет иметь место методическая

ошибка измерения - т.н. «дискретная ошибка» [1], которая будет ограничивать точность измерения

$$\Delta R = \frac{c}{4\Delta f} \tag{5}$$

Очевидным способом уменьшения дискретной ошибки является увеличение полосы качания частоты Δf , однако по техническим причинам её редко делают больше 500 МГц. При этом дискретная ошибка составляет 15 см, что для некоторых задач неприемлемо.

В настоящей работе разработан метод дополнительной обработки сигнала биений, основанный на нелинейном полиномиальном

преобразовании чебышевского типа. Полиномы Чебышева $T_n(x)$, обладают следующим свойством [2]: если на вход нелинейного элемента, статическая характеристика которого представляет собой полином Чебышева степени n, подать сигнал вида $\cos[\chi(t)]$ то на его выходе появится сигнал того же вида, но с аргументом увеличенным в n раз:

$$T_2[\cos \chi(t)] = 2\cos^2 \chi(t) - 1 = \cos[2\chi(t)]$$
$$T_n[\cos \chi(t)] = \cos[n\chi(t)]$$

Тогда для нормированного по амплитуде сигнала биений (5) справедливо следующее преобразование:

$$T_n \left\{ \cos \left[\pi \Delta f \varphi(t) \tau + 2\pi f_0 \tau \right] \right\} = \cos \left[n \pi \Delta f \varphi(t) \tau + 2n \pi f_0 \tau \right],$$

что эквивалентно увеличению девиации частоты зондирующего сигнала, и как следствие, снижению дискретной ошибки n раз:

$$\Delta R = \frac{c}{4n\Delta f} \tag{6}$$

Следует отметить, что максимально возможный порядок преобразования n будет зависеть от возможностей реализации нелинейного элемента чебышевского типа. Для аналоговой реализации элемента - $n \in [2;4]$, при цифровой реализации можно достичь существенных значений - $n \in [2;512]$, но только при высокой частоте дискретизации сигнала (15 МГц для n = 512 при $\Delta f = 50$ МГц $T_M = 1$ мс).

Таким образом, данный метод позволяет асимптотически повышать точность ЧМ-дальномера, путем введения дополнительной обработки в низкочастотный тракт. Данный метод не имеет аналогов, так как после обработки мы получаем сигнал биений с искусственно увеличенной полосой качания, а частота сигнала может быть измерена любым существующим методом измерения частоты биений.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 08-07-00175-а и 10-07-97012-р).

СПИСОК ЛИТЕРАТУРЫ

- 1. Филькенштейн М.И. Основы радиолокации М.: Радио и связь, 1983. 536с.
- 2. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1970. 831с.

МОДЕЛИРОВАНИЕ ИМПУЛЬСНЫХ ХАРАКТЕРИСТИК ПРИ ОБРАТНОМ РАССЕЯНИИ ОТ ОБЪЕКТА СЛОЖНОЙ ФОРМЫ

Бондаренко А.С.

Волгоградский государственный университет Волгоград, Россия

Импульсная характеристика радиолокационного объекта несет информацию о форме объекта и других его параметрах и может использоваться для распознавания. Эта характеристика определяет линейную интегральную зависимость между зондирующим и отраженным сигналом, которая задается соотношением типа свертки:

$$Y(t) = \int_{-\infty}^{\infty} X(t)h(t-\tau) d\tau.$$

Здесь X(t) – зондирующий сигнал, Y(t) – принятый сигнал, h(t) – импульсная характеристика отраженного объекта (реакция тракта

распространения на дельта-импульс). Для оценки импульсной характеристики объекта рассмотрим два метода.