УДК 615.454.322.582

РАЗРАБОТКА СОСТАВА И НОРМ КАЧЕСТВА РЕКТАЛЬНОЙ АНТИГЕМОРРОИДАЛЬНОЙ МАЗИ, СОДЕРЖАЩЕЙ ФИТОКОМПОЗИЦИЮ

Барсегян М.А., Айрапетова А.Ю., Степанова Э.Ф., Саркисян М.С.

ГОУ ВПО «Пятигорская государственная фармацевтическая академия Росздрава», Пятигорск e-mail: E.F.Stepanova@mail.ru

В статье раскрывается необходимость создания оригинальной лекарственной формы – ректальной мази для комплексного лечения геморроя, содержащей фитокомпозицию. Рассматривается получение промежуточного продукта – экстракта, содержащего извлечения из календулы, мяты, гамамелиса и его подробный анализ.

Ключевые слова: экстракт, обезболивание, геморрой

Введение

Геморрой — одно из тяжелых, изнуряющих заболеваний, основной формой лечения которого считается хирургическое вмешательство. И этот подход в том числе является причиной того, что лекарственных препаратов соответствующего значения недостаточно [4].

Для устранения болевого синдрома используют комбинированные обезболивающие препараты в виде гелей, мазей и суппозиториев. Наиболее широко применяются такие препараты, как ауробин, ультрапрокт, проктогливенол, репарил-гель [3].

Однако оптимальным сочетанным действием, на наш взгляд, должна обладать комбинированная фитокомпозиция, обеспечивающая антигеморроидальное, противовоспалительное и обезболивающее действие. Для осуществления такого композиционного действия в настоящее время все чаще используются фитосоставы, в которых, как правило, доминирует гамамелис. Использование составов, содержащих гамамелис, в которых удачно сочетаются дубильные вещества с флавоноидами, является актуальным, особенно, если речь идет об усилении данного состава компонентами с выраженным обезболивающим и противовоспалительным действием.

Материалы и методы исследований

В качестве действующих компонентов композиции мы использовали спирто-во-

дные извлечения гамамелиса, календулы и мяты. Нами был получен комплексный экстракт, содержащий гамамелис, календулу, мяту. Условия получения экстракта были разработаны. В качестве экстрагента был выбран 40 % этанол.

Первым этапом исследований стал выбор норм качества экстракта: в основу было положено количественное определение флавоноидов. На первоначальном этапе исследований был проведен анализ спектра спиртового раствора экстракта (0,5:200). Однако УФ спектр раствора экстракта не выявлял максимумы поглощения флавоноидов из-за наложения интенсивных полос поглощения сопутствующих веществ. Поэтому, количественное содержание флавоноидов в полученных экстрактах определяли методом дифференциальной спектрофотометрии по реакции образования комплекса с алюминия хлоридом в кислой среде. Дифференциальный спектр поглощения флавоноидов экстракта совпадал по положению максимума СО рутина (при длине волны 410 ± 2 нм), что позволило проводить количественное содержание флавоноидов в экстракте в пересчете на рутин [1, 2]. Установлено, что оптимальным соотношением объема раствора экстракта и количества реактива, явилось соотношение 1:5.

Спектр поглощения флавоноидов экстракта представлены на рис. 1.

Валидация методики проводилась по линейности, повторяемости, воспроизводимости и правильности [5].

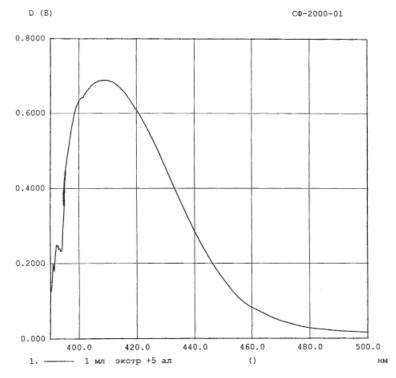


Рис. 1. Дифференциальный спектр поглощения флавоноидов экстракта

Повторяемость методики определяли на одном образце сырья в 6 повторностях. Критерий приемлемости выражался величиной относительного стандартного откло-

нения, которое не должно превышать 5 %. Он не превышал 3,0 % (табл. 1), что свидетельствует о прецизионности методики в условиях повторяемости.

Таблица 1 Результаты количественного определения суммы флавоноидов в экстракте

Содержание суммы флавоноидов в пересчете на рутин в экстракте, %	(XI-X)	(XI-X)2	Метрологические характеристики
Образец 1			
0,080	0,0005	2.10-7	$X^- = 0.0805$
0,084	-0,004	2.10-5	
0,079	0,0015	2.10-5	SD = 0,0023
0,078	0,0025	2.10-6	RSD = 2,82 %
0,082	-0,002	6.10-6	
0,080	0,0005	3.10-7	
Образец 2			
0,054	-0,0005	3.10-7	
0,055	-0,0015	2.10-6	$X^- = 0.0535$
0,054	-0,0005	3.10-7	SD = 0.0011
0,053	0,0005	3.10-7	RSD = 2,06 %
0,052	0,0015	2.10-6	
0,053	0,0005	3.10-7	

Определение воспроизводимости методики выполняли на 2-х образцах (табл. 1). Критерий приемлемости выражался величиной относительного стандартного отклонения, который составил 2,82 %, что указывает на прецизионность методики в условиях воспроизводимости.

Правильность методики устанавливали путем измерения количественного содержания суммы флавоноидов в пересчете на рутин в растворах, полученных путем до-

бавления определенного количества стандарта к исследуемому раствору. Критерий приемлемости — средний процент восстановления при использовании растворов заданных концентраций, скорректированный на 100 %, и его средняя величина должна находиться в пределах 100±5 %. В разработанной методике процент восстановления находился в пределах от 97,42 до 103,83 %, его средняя величина составила 100,33 % (табл. 2).

Таблица 2 Результаты оценки правильности методики количественного определения флавоноидов в экстракте методом добавок

Содержание суммы флавоноидов в пересчете	Добавлено СО рутина,	Расчетное содержание,	Найденное содержание,	Открываемость, $R, \%$
на рутин, мкг	МКГ 2.50	МКГ 24.70	МКГ 25.12	101 21
32,20	2,50	34,70	35,12	101,21
32,20	2,50	34,70	34,99	100,83
32,20	2,50	34,70	35,59	102,57
32,20	7,50	34,70	34,19	98,54
32,20	7,50	39,70	34,39	99,12
32,20	7,50	39,70	35,17	101,35
32,20	10,00	42,20	41,82	99,10
32,20	10,00	42,20	41,19	97,61
32,20	10,00	42,20	42,41	100,50
32,20	12,50	44,70	43,55	97,42
32,20	12,50	44,70	46,41	103,83
32,20	12,50	44,70	45,54	101,88

Среднее значение выхода – 100,33 %.

Определение линейности проводилось на 5 уровнях концентраций от теоретического содержания флавоноидов в пересчете на рутин в экстракте. Растворы готовили путем разбавления аликвоты и увеличения аликвоты для измерения количественного содержания суммы флавоноидов в пере-

счете на рутин в растворах, имеющих концентрацию 50, 75, 100, 125, 150 %. Критерием приемлемости линейности является коэффициент корреляции, величина которого должна быть не ниже 0,99. Коэффициент корреляции составил 0,998 (рис. 2, табл. 3).

Таблица 3 Определение линейности методики

Содержание, % от нормируемого	Концентрация	Аналитический отклик
значения (около)	флавоноидов, мкг/мл	(оптическая плотность)
50	16,1	0,336
75	24,2	0,518
100	32,2	0,690
125	40,3	0,859
150	48,3	1,011

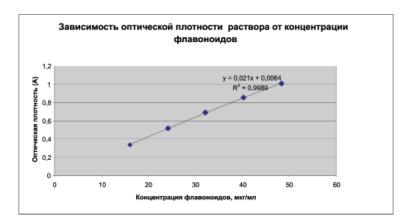


Рис. 2. Зависимость оптической плотности раствора от концентрации флавоноидов экстракта

Выводы

- 1. Впервые получен комплексный экстракт геморроидального действия, на базе растений гамамелиса, календулы и мяты.
- 2. Разработана методика определения флавоноидов в экстракте.
- 3. В ходе анализа установлено, методика позволяет проводить количественное содержание флавоноидов в исследуемых экстрактах, полученных с использованием лекарственного растительного сырья, полученных из различных регионов страны. Анализ показал, что содержание флавоноидов в экстрактах составило 0,054 0,001 и 0,081 0,0023 %.
- 4. Установлены параметры линейности, воспроизводимости, повторяемости и правильности приведенной методики.

СПИСОК ЛИТЕРАТУРЫ

1. Абдуллабекова В.Н., Тулаганов А.А. Разработка метода количественного анализа цветков календулы лекарственной // Химико-фармац. журнал. — 2001. — Т. 35, N 10. — С. 25—26.

- 2. Избирательный метод анализа флавоноидов в фитохимических препаратах / Беликов В.В. [и др.] // Проблемы стандартизации и контроля качества лекарственных средств: Материалы докл. Всесоюз. конф. М., 1991. Т. 2, ч. 2. С. 13–14.
- 3. Вовк Е.И. Рациональная фармакотерапия фактор успешного лечения геморроя // РМЖ, 2002. Т.10, №2. С. 73—77.
- 4. Воробьев Г.И., Шелыгин Ю.А., Благодарный Л.А. Консервативная терапия острого геморроя // Consillium medicum. Приложение. 2001. С. 31–34.
- 5. Мешковский А.П. Валидация аналитических методов / Современные требования к организации и деятельности контрольно-аналитических лабораторий отделов контроля качества фармацевтических предприятий: Сборник. М., 2002. С. 26–30.

WORKING OUT OF STRUCTURE AND NORMS OF QUALITY OF THE REKTAL ANTHYHEMORRHOID OINTMENT CONTAINING THE PHYTOCOMPOSITION

Barsegyan M.A., Ajrapetova A.Ju., Stepanova E.F., Sarkisyan M.S.

Pyatigorsk state pharmaceutical academy Roszdrava, Pyatigorsk e-mail: E.F.Stepanova@mail.ru

In article necessity of creation of the original medicinal form – rectal_ointments for complex treatment of the hemorrhoids, containing a phytocomposition reveals. Reception of an intermediate product – extract, containing extraction from a calendula, mint, hamamelis and its detailed analysis is considered.

Keywodrs: extract, anaesthesia, hemorrhoids