11. Виноградова М.Г., Папулова Д.Р.. Методология расчета термохимических характеристик радикальных реакций // Фундаментальные исследования. 2009. № 5. - С. 25-26.

ФУНДАМЕНТАЛЬНАЯ ХИМИЧЕСКАЯ ПОДГОТОВКА СТУДЕНТОВ МЕДИЦИНСКОГО ВУЗА – ВАЖНОЕ ЗВЕНО ПРОЦЕССА ФОРМИРОВАНИЯ СОВРЕМЕННОГО ВРАЧА

Т.Н. Литвинова

Кубанский государственный медицинский университет кафедра общей химии
Краснодар, Россия

Важной современной тенденцией развития высшего образования является его фундаментализация. Под фундаментализацией образования мы понимаем приоритетность: теоретических дисциплин; структурно-организованных, функционально-значимых знаний; методологической компоненты, выработка обобщенных междисциплинарных умений; овладения универсальными методами исследования. Именно такой подход к образованию позволяет формировать у студентов системное мышление, мотивацию учения, ценностное отношение к фундаментальным теоретическим потребности к их постоянному пополнению и применению на практике.

Основой фундаментализации химического образования в медицинском вузе мы считаем такую систему и структуру образования, которая ориентирована не на узкоспециализированные, а на общетеоретические и методологически важные, долго живущие и инвариантные знания, способствующие целостному восприятию научной картины мира, развитию интел-

лекта, творческой самореализации и адаптации к быстро меняющимся условиям жизни и профессиональной деятельности.

В медицинском вузе студенты изучают общую, биоорганическую, биологическую химию, а также клиническую биохимию. Знания студентами комплекса химических наук в их преемственности и взаимосвязи дают большую возможность, широкий простор в исследовании и практическом использовании различных явлений, свойств и закономерностей, способствуют развитию личности. Специфическими особенностями изучения химических дисциплин в медицинском вузе, по нашему мнению, являются:

- взаимозависимость между целями медицинского образования и химической подготовки в его структуре;
- универсальность и фундаментальность данных курсов, особенность построения их содержания в зависимости от характера и общих целей подготовки врача и его специализации;
- единство изучения химических объектов на микро- и макроуровнях с раскрытием разных форм их химической организации как единой системы и проявляемых ею разных функций (химических, биологических, биохимических, физиологических и др.) в зависимости от их природы, среды и условий;
- зависимость методологического, эвристического, прогностического, мировоззренческого потенциала фундаментальных химических знаний и от уровня их системности и структурной организации;
- зависимость дидактических и профессиональных ценностей от связи химических знаний и умений с реальной действительностью и практикой, в том числе медицин-

ской, в системе «общество – природа – производство – человек», обусловленных неограниченными возможностями химии в создании синтетических материалов и их значением в медицине, развитием нанохимии, а также в решении экологических и многих других глобальных проблем человечества.

Мы считаем, что формирование химических знаний и умений студентов как единый, монолитный фундамент, является очень важным аспектом процесса обучения студентовмедиков для создания прочной основы будущей успешной врачебной деятельности.

Вместе с тем, в проекте Федеральных образовательных стандартов для медицинских специальностей высшего профессионального образования (2009) предполагается уменьшение часов на изучение химических дисциплин (общей и биоорганической химии) приблизительно на 40%, что, безусловно, входит в противоречие с фундаментализацией как одной из современных тенденций развития высшего профессионального образования.

Это противоречие углубляется снижением уровня подготовки школьников по химии, в частности, желающих получить медицинское образование. Так, в 2009 году в Кубанский государственный медицинский университет на лечебный факультет поступили 135 абитуриентов, имеющих по химии результат ЕГЭ 70 баллов и выше. По итогам 1 семестра только 40 (24,6%) студентов из этой категории имеют рейтинг по химии 70 – 85 баллов, а у 32 студентов (23,7%) рейтинг составляет лишь 10 – 45%.

Уменьшение часов на изучение фундаментальных химических дисциплин в сочетании с невысоким уровнем владения студентами

школьным курсом химии входит в явное противоречие с требованием этого же проекта стандарта к овладению компетенциями выпускника медицинского вуза. Например, формирование компетенции «способен и готов выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности врача-лечебника, использовать для соответствующий ИΧ решения физикохимический и математический аппарат» требует серьезной фундаментальной подготовки. Недостаточное количество учебного времени на изучение общей химии свидетельствует о недооценке этого предмета в системе общенаучной и профессиональной подготовки будущего врача. Нами выделены блоки химических знаний из курса общей химии, необходимые для освоения всех дисциплин, изучаемых в медицинском вузе:

- связи химического строения веществ, их свойств с биологической ролью; химия биогенных элементов, применение их соединений в медицине; химия гемоглобина;
- протолитический, гетерогенный, металлолигандный, окислительновосстановительный балансы, как основа гомеостаза организма;
- способы выражения концентрации вещества в растворе; коллигативные свойства растворов (осмос, осмолярность, диффузия и др.);
- сильные и слабые электролиты в организме, особенности их растворов; рН растворов, жидкости и ткани организма как проводники электричества второго рода (ионная проводимость); биопотенциалы;
- физико-химические основы адсорбционных процессов и терапии (гемо-, лимфо-, плазмо-, энтеросорбция), устойчивость дисперсных систем, природа коллоидного состоя-

ния, коагуляция, коллоидная защита, биологические поверхностно-активные вещества (ПАВ); свойства растворов белков;

 физико-химические методы исследования в мелицине.

Примером фундаментализации химического образования медиков и одним из путей разрешения указанных противоречий может служить предложенный нами вариативный курс общей химии для студентов медицинского вуза. При его построении мы учли необходимость укрупнения дидактических единиц и минимизации материала, что важно при дефиците учебного времени, а также психологию усвоения учебного материала студентами первого курса. Для построения учебного предмета и глобального его структурирования мы использовали интегративно-модульный подход (ИМП), который предполагает внутри- и межпредметную интеграцию содержания, оформление основных подсистем знаний в виде модулей и их дидактико-методическое обеспечение. Интегративно-модульный курс общей химии создает такой фундамент, который позволяет формировать не только частные, общепредметные компетенции, но и ключевые, например, химическая грамотность, умение жить в мире веществ, являются частью общей культуры человека. Велика роль химии в воспитании экологической и валеологической культуры людей, так как эти проблемы имеют в своей основе преимущественно химическую природу, а в решении многих из них используются химические средства и методы. Химия и ее история оказывают серьезное влияние на формирование нравственности и на развитие личности студентов в целом, поэтому недооценка химической подготовки врача вызовет снижение уровня необходимой фундаментализации современного медицинского образования.

ПОВЕДЕНИЕ РАСТВОРЕННОГО ВЕЩЕСТВА В РАСТВОРИТЕЛЯХ РАЗЛИЧНОЙ ПРИРОДЫ

Б.Б. Танганов

BCГТУ Улан-Удэ, *Poccuя* tanganov@rambler.ru

В растворах электролитов протекают сложные взаимодействия растворенного вещества с растворителем, приводящие в зависимости от их свойств (кислотно-основная сила электролита и растворителя, дипольные моменты и подиэлектрическая проницаемость, лярность, ионное произведение растворителя и т.д.) к образованию в одних случаях молекулярных сольватов, в других - к диссоциации сольватированных ионов, а в некоторых случаях - преимущественно к образованию ассоциированных частиц в виде ионных пар, тройников или еще более сложных ассоциатов. Таким образом, можно предположить, что в электролитных растворах нет свободных ионов и молекул.

Сольватационные эффекты возникают в результате взаимодействия молекул растворителя (большинство которых имеют дипольную природу) с частицами растворенного вещества. Большинство растворителей характеризуется полярной природой. Образование сольватов недиссоциированными молекулами обусловлена ван-дер-ваальсовыми и диполь-дипольными взаимодействиями, а образование сольватированных ионов (Ион \cdot nS) - ион-дипольными взаимодействиями.

Процесс диссоциации, то есть растворения вещества в растворителе, протекает достаточно