Биологические науки

НОВЫЙ ТИП ЗАЩИТНОЙ СИСТЕМЫ МИКРООРГАНИЗМОВ

Пиняскина Е.В.

Прикаспийский институт биологических ресурсов Дагестанского научного центра Российской академии наук, Махачкала, Дагестан, Россия

Нами получены новые данные, впервые демонстрирующие активность длинноволнового видимого света в защитных фотобиологических эффектах, позволяющих констатировать существование неизвестной ранее фотоиндуцибельной защитной системы, обеспечивающей повышенную устойчивость клеток при летальном действии оптического излучения экологического диапазона длин волн.

Выявлена эффективность длинноволнового видимого света с максимумом в спектре действия при 680 нм в фотовосстановлении дрожжевых клеток, инактивированных оптическим излучением СУФ-, ДУФ- и видимого диапазонов спектра Обнаружение эффектов фотовосстановления при инактивирующих воздействиях ДУФ- и видимого света является первым указанием на возможность фоторепарации повреждений, образующихся по фотодинамическому механизму в генетическом аппарате и мембранных структурах клетки с участием эндогенных фотосенсибилизаторов.

Установлен общий характер закономерностей проявления обнаруженных эффектов, что свидетельствует о функционировании в дрожжевых клетках единой фотоиндуцибельной защитной системы, не специфичной в отношении природы летальных фотоповреждений.

Фотоиндуцибельная защитная система обнаружена и изучена не только у разных штаммов дрожжей, но и у клеток млекопитающих (клеточные штаммы клеток, происходящие из злокачественной опухоли человека и клетки китайского хомячка B2d-ii-PAP28 (клон 237)). Исходя из экспериментальных данных, можно предположить наличие специфической защитной фотоиндуцибельной системы как у простейших организмов, так и у многоклеточных.

Полученные данные расширяют существующие представления о клеточных защитных системах, направленных на повышение жизнеспособности клеток при инактивирующих воздействиях света.

Работа представлена на III научную международную конференцию «Фундаментальные исследования», Доминиканская республика, 10-20 апреля 2008г. Поступила в редакцию 20.03.2008г.

БИОЛОГИЯ РОТАНА В ВОДОЕМАХ КУЗБАССА

Поляков А.Д., Бузмаков Г.Т.

Кемеровский государственный сельскохозяйственный институт

Кемерово, Россия

Ротан, или головешка (Percottus glenii Dub., 1877) имеет малую известность среди жителей Кемеровской области. Естественный ареал распространения - Дальний Восток, бассейн р. Амур. В европейскую часть России был завезен случайно в начале двадцатого столетия, где быстро распространился. В Кузбасс завезен во второй половине прошлого века любителями аквариумного рыбоводства. Встречается в водоемах Кемеровского района. Это небольших размеров рыба, длиной от 8 до 28 см. Окраска тела темно-бурая, у самцов в брачный период почти черная. Очень пластичная и неприхотливая. Живет в озерах, малых реках, горных ручьях, болотах и даже в дождевых лужах. Выживает даже при полном замерзании водоема. Всеядный. Питается всеми видами беспозвоночных, икрой и молодью рыб. При вселении в небольшие замкнутые водоемы он вскоре становится единственной рыбой. При плотности свыше 100 экз./м³ отмечаются случаи каннибализма. Половой зрелости достигает на 2-3-м году жизни. Нерестится при температуре воды 15-19^оC и выше. Нерест порционный, в течение всего лета, по мере созревания половых продуктов. Икра клейкая, удлиненной формы. За один икромет самка ротана откладывает до 300-1000 икринок. Период инкубации -10-12 дней. В это время самец постоянно находится над икрой, обмахивая ее плавниками, чем усиливает приток кислорода вместе с движением воды. Продолжительность жизни - до 8 лет, но основную массу в популяции водоема составляют особи 3-4-х летнего возраста при длине тела 11-13 см. Промыслового значения не имеют, а служат объектом для любителей.

В последние годы поступают тревожные сообщения о заселении им многих водоемов Кемеровской области. По результатам опросных данных проведенных среди жителей Кузбасса удалось установить его присутствие почти во всех пойменных водоемах (80%). С 2002 года стали поступать достоверные сведения о наличии ротана уже в самой реке Томи. Исследованный нами водоем в пригороде города Кемерово (Ишаново) указывает на то, что эта рыба выносит чрезвычайно высокие концентрации загрязняющих веществ в воде и вытесняет всю местную ихтиофауну.

Жизнедеятельность ротана в исследованных водоемах неодинакова. Особи популяции озера Ишаново уступают размерами обитающим в теплом канале водоема-охладителя Беловской ГРЭС. Минимальная абсолютная длина тела ротанов озера Ишаново составляет 6,5 см, максимальная – 26 см, тогда как аналогичные показатели особей популяции теплого канала составляют соответственно, 8 см и 27 см. Эта разница в размерах и темпах роста обуславливается различной температурой воды и кормовой базой в рассмотренных водоемах

Возраст (лет)	1+	2+	3+	4+	5+	6+	7+
Абсолютная	6,5	12	18,5	21	22,5	24	26
длина тела (см)							
Вес (г)	8,5	34	104	148	198	228	281

Результаты исследования показывают, что присутствие ротанов в малых водоемах ведет к существенному уменьшению разнообразия видов и обилия личинок амфибий и беспозвоночных, питающихся этими личинками. Однако разные виды амфибий в разной степени восприимчивы к воздействию Р. glenii. В водоемах, колонизованных ротаном, как правило, не могут успешно размножаться тритоны и лягушки. Ротаны способны нарушать нормальное развитие нерестового поведения тритонов обоих видов, поедать взрослых Т. vulgaris их личинок. Лягушки не избегают нереститься в водоемах, колонизованных ротаном, но их личинки активно поедаются ротанами и в большинстве случаев полностью уничтожаются ими до метаморфоза. Жабы серые B. bufo успешно размножаются в заселенных ротанами водоемах. Личинки этого вида амфибий сравнительно мало съедобны для Р. glenii и в массе достигают стадии метаморфоза в таких водоемах. Возможно, что условия развития личинок B. bufo даже улучшаются после заселения водоемов ротанами. В ряде водоемов ротан может полностью выедать личинок тритонов. По нашим наблюдениям для бассейна среднего течения реки Томи в Крапивинском районе, тритон перестал встречаться в некоторых водоёмах в окрестностях Ажендарово, Салтымаково, Крапивино после появления в них этого вида рыбы с 2000 г.

В водоемах, заселенных ротаном, не встречались или встречались крайне редко взрослые жуки сем. Dytiscidae и их личинки, водные жуки, личинки стрекоз, пауки, пиявки рыбьи. Эти виды были отмечены в некоторых других водоемах, в которых нет ротана. Однако клопы-гладыши Notonecta glauca в массе населяют один из водоемов села Ишаново с Р. glenii. Из моллюсков в одном из водоемов, населенном ротанами, остаются многочисленными крупные прудовики Lymnea stagnalis.

Учитывая природную агрессивность и чрезвычайную выносливость этого чуждого местной ихтиофауне вида в незамедлительном порядке необходимо предпринимать экстренные меры по предотвращению его дальнейшего расселения по водоемам не только Кузбасса, но и прилегающих регионов. Для этой цели провести вселение в водоемы хищников: щуку, судака, окуня. Кроме того, провести широкомасштабную просветительскую работу среди населения о вреде этой рыбы для ихтиофауны Кузбасса.

Состав рациона ротанов, обитающих в озере, существенно отличается от такового популяции теплого канала. Вскрытие отловленных экземпляров показало состав рациона рыбы. По типу питания он полифаг; по частоте встречаемости в пищеварительном тракте преобладали разновозрастные группы рыб 8 видов

(Карась серебряный, карась золотой, карась амурский, верховка, сибирская щиповка, плотва, карп, ротан).

В водоемах Кемеровской области ротан питается личинками насекомых (Chironomidae, Aedes, Chaoborus, Odonata). У молоди, встречаются ракообразные Cladocera и Copepoda, а у крупных особей - мелкие рыбы.

Наиболее подробно питание ротана в естественном ареале исследовано нами в пойменных водоемах бассейна р. Томи в поселке Новостройка. Наши исследования показывают, что спектр питания ротана исключительно широк. В пище отмечено 76 компонентов. Ветвистоусые раки представлены 18 видами, среди которых преобладают Chydorus sphaericus, Eurycercus lamellatus, Simocephalus elizabethae.

Из веслоногих раков отмечено 8 видов (численно преобладают личиночные стадии). Из высших ракообразных ротан предпочитает молодь речного рака. Существенную роль в питании играют личинки различных водных насекомых, причем ведущей группой, как по численности, так и по биомассе, являются личинки хирономид.

Молодь ротана хищничает редко, взрослые кормятся преимущественно рыбой: молодью ротана, гольянов. У личинки ротана длиной 5 мм (с желточным мешком) пища не обнаружена. Рыбы размером 8-11 мм - вполне оформившиеся и активно питающиеся мальки. Пищей им служат ветвистоусые, веслоногие раки и личинки хирономид. По числу особей и по весу преобладают ветвистоусые раки и особенно Chydorus sphaericus. Из веслоногих раков встречаются в основном неполовозрелые формы. Личинки хирономид представлены очень мелкими особями. Единично отмечаются личинки поденок, встречаются водоросли.

У молоди размером 12-25 мм пища более разнообразна. Преобладающей группой в его питании становятся личинки хирономид. У рыб этой размерной группы в желудках впервые обнаружены остатки рыбной пищи. Отмечен случай, когда 18-миллиметровый ротан проглотил рыбу того же вида длиной 7 мм. Этот факт свидетельствует не только о наличии каннибализма, но и возможности перехода ротана уже на ранних стадиях к хищничеству. Тем не менее, хищничество для ротанов этой размерной группы исключение. Молодь длиной 26-40 мм питается личинками насекомых, обитающих в воде, среди которых преобладают хирономиды. Часто отмечаются и взрослые насекомые. Роль низших ракообразных значительно снижается: они составляют по весу около 30 %. Рыбы длиной 41-60 мм, среди которых уже встречаются половозрелые особи, почти не питаются низшими ракообразными и полностью переходят на более крупные объекты - личинок и имаго насекомых. В пище у них появляются пресноводные креветки, встречаются останки рыб. Ротан размером 61-100 мм питается преимущественно личинками водных насекомых. Хирономиды используются им в меньшей степени (34,1 %). Заметную роль в питании начинают играть рыбы (11,1 %). В питании ротана можно выделить три периода: планктоноядный (8-11 мм), бентосоядный (12-100 мм) и хищный (свыше 100 мм). И в приобретенном новом ареале спектр питания ротана очень широк - от циклопов и дафний до рыб, лишь немного уступающих ему по размерам.

При недостатке корма в водоемах крупные особи ротана поедают более мелких, как и в естественном ареале (Бандура, 1979; Болонев и др., 2002). Это является одним из факторов, позволяющих его популяциям существовать в любых биоценозах и поддерживать численность на постоянном уровне. На основании проведенных нами опытов в зимний период 2005-2007 годов было установлено, что из всех видов сорных рыб ротан является наиболее стойким к действию хлорной извести и аммиачной воды.

Выводы и предложения

1. Результаты исследований позволяют считать ротана крайне выносливой рыбой с очень широкими адаптационными способностями, способствующими его быстрому расселению.

- 2. В настоящее время ареал ротана на территории Западной Сибири продолжает расширяться, особенно в период паводка (май-начало июня).
- 3. Учитывая особенности питания этого вида интродуцента, влияние на аборигенную ихтиофауну, его присутствие можно оценивать как крайне негативное
- 4. Особенности биологии ротана позволяют его популяциям существовать в любых биоценозах и поддерживать численность на постоянном уровне.
- 5. Расселение ротана в замкнутые мелкие и прогреваемые водоемы среднего течения реки Томи послужило резкому сокращению численности обыкновенного тритона, занесенного в Красную книгу Кемеровской области.

Самым эффективным регулятором численности ротана могут служить местные виды хищных рыб — щука обыкновенная (Esox lucius) и окунь речной (Perca fluviatilis). Промышленное разведение с последующим расселением в водоемы области можно осуществить на Беловском рыбном хозяйстве.

Работа представлена на III научную международную конференцию «Фундаментальные исследования», Доминиканская республика, 10-20 апреля 2008г. Поступила в редакцию 20.03.08г.

Технические науки

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО ОПЕРАТОРА ЛОКАТОРА УТЕЧЕК ГАЗА

Бушмелева К.И., Плюснин И.И., Бушмелев П.Е.

Сургутский государственный университет XMAO - Югры, Сургут, Россия

Важнейшим средством обеспечения экологической безопасности территорий, на которых расположены газотранспортные системы, является создание систем мониторинга состояния магистральных газопроводов. Это связано с тем, что объекты газодобывающих, газотранспортных и газоперерабатывающих организаций ОАО «Газпром» являются источниками негативного воздействия на окружающую среду в результате систематических выбросов и сбросов, а также возможных загрязнений при возникновении нештатных ситуаций и техногенных аварий.

Необходимо отметить, что длительная эксплуатация газопроводов предъявляет повышенные требования безопасности их технического состояния. В свою очередь периодический контроль и освидетельствование состояния газопроводов дают возможность продлевать ресурс их эксплуатации сверхнормативного. Важной задачей при проведении обследований газопроводов является выбор методов исследования, комплексно решающих поставленную задачу. Немаловаж-

ное значение имеет также определение объема и периодичности обследования, обеспечивающее с необходимой степенью вероятности надежность результатов исследования.

Проблема мониторинга состояния магистральных газопроводов на сегодняшний день является очень актуальной, организации, эксплуатирующие данные объекты, ответственны как за поддержание объекта в рабочем состоянии, так и за постоянный контроль его состояния. В настоящее время существуют различные устройства и методы для обнаружения утечек газа (метана) из газопроводов [1-3], наиболее удобными и чувствительными среди них являются лазерные локаторы. Однако проблема заключается не только в том, с помощью чего провести обследование, но и как оперативно обработать полученную информацию, в данной работе представлен еще одним методом обследования и обработки информации при контроле состояния магистральных газопроводов.

В Сургутском государственном университете уже несколько лет ведутся работы по созданию оборудования, способного проводить дистанционную диагностику состояния и комплексный анализ магистральных газопроводов ОАО «Газпром». Сегодня уже создана и работает мобильная система лазерного зондирования представляющая собой программно-аппаратный диагностический комплекс, состоящий из лазерного