
скорость роста окисла за счет химической реакции k, распределение и концентрация подвижно-

го заряда $c_{\ell}x,t)$, изменение потенциала ϕ и напряженности поля E в окисле.

Рис. 2. Зависимость емкости структуры $Ta - Ta_2O_5 -$ электролит от напряжения формовки. 1) 0.2 mA/cm², 2) 0.4 mA/cm² 3) 0.8 mA/cm².

В результате расчетов при $\mu = 5.6 \cdot 10^{-13} \text{ м}^2/\text{B} \cdot \text{c}$ получена постоянная скорости роста для химической реакции $k = (2-5) \cdot 10^{-5} \, \text{м/c}$.

Для разных плотностей тока рассчитаны зависимости скорости реакции и распределение поля в окисле Ta_2O_5 . Рассчитано изменение диффузионного поля и потенциала, возникающего за счет разности концентраций на границе окиселметалл. Величина поля в области диффузии $E_D=1\cdot10^8\mathrm{B/m}$ и составляет 10% от внешнего поля, потенциал ϕ_D имеет значение порядка $0.001\mathrm{B}$. Показано, что в веществах с подвижностью больше $\mu=5.6\cdot10^{-15}\mathrm{m}^2/\mathrm{B}\cdot\mathrm{c}$ проявляется внутреннее поле носителей заряда.

Показано, что емкость, измеренная в процессе анодного окисления, совпадает с рассчитанной емкостью диффузионного слоя на границе металл-окисел.

Представленная модель позволяет объяснить искривление Тафелевских зависимостей U от $\log j$ [2] полем диффузионного барьера на границе металл-окисел при увеличении плотности тока и толщины окисла. Зависимость подвижности и коэффициента диффузии согласно соотношению Эйнштейна определяет постоянство тока и напряженности поля, а, следовательно, и наклона зависимости Тафеля от температуры.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Н.А. Авдеев, Г.С. Сиговцев. "О математических моделях процессов анодного окисления"// Труды Петрозаводского государственного университета: сер. Прикладная математика и информатика. Вып.9./ Под.науч. ред. проф. В.И. Чернецкого // ПетрГУ. Петрозаводск, 2000, с 57.
- 2. Л. Юнг "Анодные окисные пленки" //Л.:Энергия, 1967.

МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ КЛАССА ОПАСНОСТИ МАЛОИЗУЧЕННЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Дербишер Е.В., Веденина Н.В., Александрина А.Ю., Радченко А.В., Дербишер В.Е. Волгоградский государственный технический университет Волгоград, Россия

Быстрое развитие и внедрение в практику научных исследований вычислительной техники и программных средств способствует все большему распространению численных методов исследования и прогнозирования различных свойств (физических, химических, биологических, экологических, технологических) простых и сложных веществ, по данным характеризующим свойства и строение их молекул (химические структуры) имеет метод основанный на моделировании зависимости «структура-свойство» и использование моделей для получения предварительных (оценочных) данных, которые могут быть использованы в при анализе научных гипотез, изыскательской, предпроектной и проектной деятельности, например в задачах экологического нормирования [1].

Настоящая работа является продолжением проводимых авторами исследований в области компьютерного прогнозирования экологических свойств химических соединений [2,3] и посвящена в дальнейшем, разработке методологии моделирования зависимости «структура—класс опасности вещества» для разработки методики предварительной экологической экспертизы виртуальных и малоизученных органических соединений. Это тем более важно, что в настоящее время известно более 19 млн. реальных химических соединений, еще больше сосредоточено в банках данных виртуальных структур, из которых 60-80 тыс. производится в промышленном масштабе и

из них прошли предусмотренную законодательством экологическую экспертизу не более полутора тысяч. Например, понятием класс опасности охвачено всего 1015 веществ [4]. То есть пространство для экологической экспертизы веществ и структур сегодня практически неисчерпаемо. С

точки зрения методологии прогнозирования свойства, рассматриваемый подход представляет собой неформализованную химическую задачу установления зависимости «структура - свойство». При этом в равной степени важны решения как прямой, так и обратной задачи (рис.1).

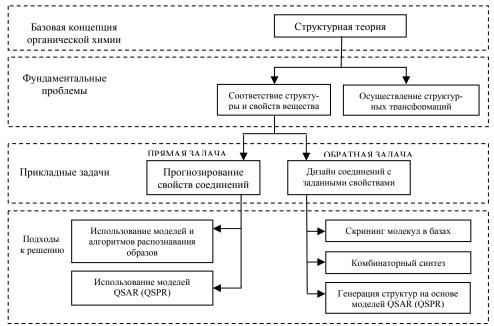


Рис.1. Задачи и подходы к решению в проблеме установления взаимосвязей

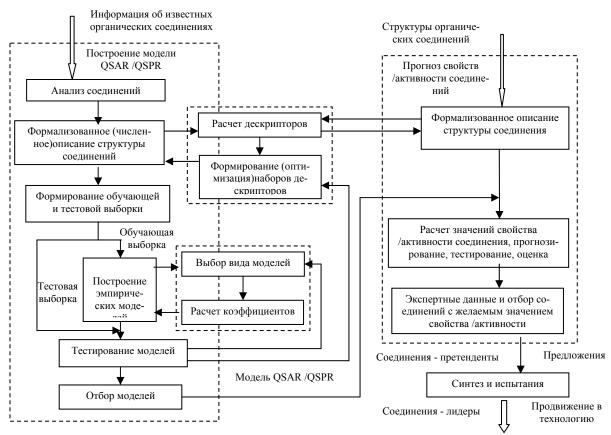


Рис.2. Маршрут прогнозирования экологических свойств соединений

Для численного описания структуры конкретного химического соединения в моделях предложено использовать так называемые дескрипторы химической структуры [5]. В принципе дескриптором может является как число, рассчитываемое из структурной формулы — молекулярная масса, количество определенных атомов, частичные заряды на атомах и т.д., так и фрагмент структуры. К настоящему времени описана теория построения и использования множества дескрипторов. При этом дальнейшее углубление

представлений о молекулярной структуре дает возможность создавать новые дескрипторы и модели, отражающие эти представления.

Как подготовительная процедура для моделирования и предметного использования зависимости «структура - свойство» - это в данном случае расчетный класс опасности, осуществлялось формирование описания химических соединений с помощью дескрипторов разного уровня информативности, иерархический комплекс которых представлен в табл. 1.

Таблица 1. Иерархия дескрипторов, используемые для описания химической структуры

Класс дескрипторов	Типы дескрипторов
Дескрипторы элементного уровня	1. Число атомов одного сорта
	2. Атомные веса фрагментов структуры
Дескрипторы структурной формулы	1.Топологические индексы
	2.Структурные фрагменты
Дескрипторы электронного уровня	1. Частичные заряды на атомах
	2.Молекулярные рефракция
	3. Энергиивысшей занятой и низшей незанятой орбиталей
Дескрипторы межмолекулярной взаимо-	1.Константы Гамета
действий	2.Индукции постоянная
	3.Стерические константы

В качестве дескрипторов структурной формулы использовались следующие топологические индексы: индекс Балабана, индекс Винера, молекулярно — топологический индекс Шульца, топологический диаметр, коэффициент нормы и др.

Таким образом, нами подготовлены теоретические предпосылки для создания конкретной компьютеризированной методики прогнозирования класса опасности органических веществ.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Экспертные системы в химической технологии. Основы теории, опыт разработки и применения / Мешалкин В.П. М.: Химия, 1995.-368 с.
- 2. Определение расчетного индекса экологической опасности веществ методами нечеткой математики/Гермашев И.В., Дербишер Е.В., Веденина Н.В., Дербишер В.Е.//Химическая промышленность сегодня.-2003.-№11.-С. 27-34.
- 3. Априорное ранжирование факторов при расчете индекса экологической опасности веществ с использованием нечетких множеств / Е.В. Дербишер, П.И. Погорелов, И.В. Гермашев, В.Е. Дербишер //Химическая промышленность сегодня.-2006.-№8.- С.48-56.
- 4. Новый справочник химика и технолога. //Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. НПО «Профессионал» С.-П. 2004с. 1024 с.
- 5. Оценка и использование дескрипторов ВСИТ в исследованиях QSAR и QSPR // Химия: РЖ.-1999. №20.-№ 20Б1117. Реф.: Estimation

and use of descriptors VSIT in researches QSAR and QSPR / Stanton David T. // Chem. Inf. And Comput. Sci. −1999.-39, №1.-c.11-20.

УПРУГИЕ СВОЙСТВА МЕТАЛЛОВ ХИРУРГИЧЕСКИХ ИНСТРУМЕНТОВ

Муслов С.А.

Московский государственный медикостоматологический университет Москва, Россия

В работе выполнен анализ упругих характеристик (уровня, ориентационной зависимости и степени анизотропии) монокристаллов металлов Ті, ТіNi-ТіFe, Fe, применяемых для изготовления специального хирургического инструментария.

Упругие характеристики материалов медицинского назначения играют большую роль для функциональных свойств материалов и конструкций из них. Механическая совместимость абиотических материалов и инструментов предъявляет особые требования к их пассивному деформационному поведению, а динамика продвижения новых материалов для медицины имеет ряд особенностей, связанных с прохождением ими дополнительных тестов и сертификаций на предмет их дальнейшего использования. В силу этого обстоятельства лишь немногие из перспективных материалов "кандидатов" могут считаться практически ценными и рекомендованными к последующему медико-биологическому применению. Создатели современных материалов стремятся добиться деликатного и благоприятного