Научная конференция с международным участием «Современные наукоемкие технологии Биологические науки

Электронно-ионная обработка ("BJ) пивоваренных дрожжей

Осипова М.В., Глущенко Л.Ф. ФГОУ ВПО «Новгородский государственный университет имени Ярослава Мудрого» Великий Новгород, Россия

Дрожжам принадлежит существенная роль в проведении процессов брожения сусла и дображивания молодого пива. Хорошо известно, что к пивоваренным дрожжам в производстве пива предъявляются строгие требования, ведь их физиологическое состояние влияет на скорость протекания данных процессов и на качество пива.

В последнее время произошли значительные изменения в процессах производ-ства пива. Все большее распространение получили различные способы, интенсифицирующие процессы брожения и созревания пива, например, модификация традиционных технологий (аэрация сусла, аэрация дрожжей, иммобилизация дрожжей, рециркуляция сусла и др.), использование химических факторов активации дрожжей (ферментов, витаминов, микроэлементов), приенение физических методов активации дрожжей (воздействие ультразвуком, лазерным излучеием, высокочастотной обработкой, фотоакти-ация др.). Как показали многочисленные исследования, все эти способы позволяют интенсифицировать технологический процесс и выход конечного продукта.

Учитывая, что ЭИО оказывает влияние на жизнедеятельность дрожжей, мы провели исследования по определению рациональных режимов электронно-ионной обработки Пивоваенных дрожжей Saccharomyces cerevisiae немецкой расы Rh с целью интенсификации процесса брожения.

Дрожжи обрабатывали, используя опытную установку, смонтированную на технологическом трубопроводе подачи дрожжей в бродильный аппарат с регулируемой напряенность электрического поля коронного разряда от 1 до 4 кВ/см и экспозицией обработки 25 с. Пройдя активную зону ЭИО, обработанная дрожжевая суспензия выводилась через патрубок, расположенный в днище аппарата.

При проведении работы оценивали качество дрожжей, продолжительность броже-ия, сохранение свойств дрожжей после нескольких генераций, качество пива.

В качестве контроля служили дрожжи без дополнительной активации и дрожжи, подготовленные с использованием ферментных препаратов (Глюкозим Л400 с высокой активостью глюкоамилазы, Клараза Б с высокой

активностью α -амилазы), которые увеличивают степень расщепления декстринов до сбражиаемых сахаров и повышают степень сбраживания сусла.

Наша работа показала, что ЭИО дрожжей:

- обеспечивает значительное повышение качества дрожжей по таким показателям, как количество нежизнеспособных клеток, упитаность, прирост дрожжевой массы, скорость сбраживания;
- ускоряет брожение пива с начальной концентрацией сухих веществ 11 % на 2-е суток (38 %);
- обеспечивает сохраняемость дрожжей в течение нескольких последующих генераций после их ЭИО в 5...7 генерации;
- обеспечивает получение пива высокого качества.

Таким образом, наша работа показала, что ЭИО пивоваренных дрожжей при напряженности электрического поля коронного разряда 3 кВ/см и экспозиции 25 с можно рассматривать как способ интенсификации процесса брожения пива.

Применение цифровой обработки изображений для оценки качества пива

Сорокина С. Е., Ткаль В.А Новгородский государственный университет им. Ярослава Мудрого Великий Новгород, Россия

Пиво наиболее распространённый напиок с достаточно хорошо отработанной и разнообразной технологией его производства. Существует много конкурирующих между собой сортов пива, отличающихся по органолетическим и цветовым характеристикам. Несмотря на кажущуюся простоту производства и состав – это сложный биологический объект с активно протекающими в нём физико-химическими процессами, приводящими к изменению качества. Контроль качества пива в процессе производства, хранения и транспортировки является необхоимым условием в борьбе пивоваренных концернов за рынок сбыта. Поэтому неслучайно разработке уделяется большое внимание эффективных методов исследования и диагнотики пива, которые можно подразделить на три группы – органолептические, микробиолоические и технико-химические. Эти методы являются трудоёмкими, требуют дорогостоящего оборудования, приборов, материалов, высоковалиицированного персонала. Для регистрации осадка, инородных частиц и изменений в пиве