ПРИМЕНЕНИЕ КОНКУРЕНТНОГО СПЕКТРОГРАФИЧЕСКОГО МЕТОДА ДЛЯ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ

КОМПЛЕКСОВ РЗЭ С ЭДТФ

Андреев С.В., Горелов И.П.

Тверской государственный университет, Тверь

Показана применимость метода спектрографии высокого разрешения к изучению комплексов редкоземельных элементов (P39) с этилендиамин-N,N,N',N'-тетраметиленфосфоновой кислотой ($9ДТ\Phi$). Впервые определены константы устойчивости комплексов Y^{3+} , Ce^{3+} , Tb^{3+} , Yb^{3+} и Lu^{3+} с $9ДT\Phi$.

Электронная спектроскопия высокого разрешения предложена была ДЛЯ определения констант устойчивости комплексов редкоземельных элементов (РЗЭ) с различными лигандами и в особенности с комплексонами [2]. С этой целью используется изменение оптической растворов в области *f-f* плотности переходов (в очень узкой области длин волн). В отличие от спектрофотометрии разрешение) В комплексных соединений РЗЭ, полученспектрографах высокого ных вместо одной разрешения, размытой полосы появляется несколько очень узких полос поглощении. Каждая полоса в обшем случае соответствует какому-либо определенному комплексу в растворе. Таким образом, изучая эти полосы, можно получить информацию об относительных количествах этих комплексов, а, значит, в итоге рассчитать их константы устойчивости.

Недостатком этого метода является электронные TO. переходы требуемыми характеристиками имеются далеко не у всех РЗЭ, поэтому основным объектом для его использования являются комплексы неодима(III), методика работы с которыми отработана полностью. Для определения констант устойчивости комплексов других РЗЭ был предложен конкурентный спектрографический метод [4]. Он основан на спектрографическом изучении следующего равновесия:

 $Nd^{3+} + 2L^{8-} + Ln^{3+} \leftrightarrow NdL^{5-} + LnL^{5-}$, (1) где Ln^{3+} - ион исследуемого РЗЭ (лантаноида); NdL^{5-} и LnL^{5-} - комплексы,

образуемые ионами Nd^{3+} и Ln^{3+} о исследуемым лигандом L .

В настоящей работе в качестве исследуемого лиганда была взята этилендиамин-N,N,N',N'- тетраметилфосфоновая кислота (ЭДТФ, H_8L), образующая высокопрочные комплексы с ионами РЗЭ, что делает ее перспективным реагентом для применения в процессах разделения смесей РЗЭ. При выполнении данного исследования нами было намечено решение двух основных залач:

- а) проверка пригодности метода электронной спектроскопии высокого разрешения для изучения систем РЗЭ ЭЛТФ:
- б) определение с помощью указанного метода констант устойчивости комплексов всех РЗЭ с ЭДТФ и прежде всего комплексов YL^{5-} , CeL^{5-} , TbL^{5-} , YbL^{5-} и LuL^{5-} , сведения о которых в литературе [1, с. 179] отсутствуют.

Использованные в работе ЭДТФ и хлориды всех РЗЭ были отечественного производства марки «чда». Спектры снимали в области 425-430 нм (область полос поглощения незакомплексованных ионов Nd^{3+} и их комплексов с изучаемым лигандом) на спектрографе высокого разрешения ДФС-12. Величина 1g K_{NdL} , необходимая для вычисления констант устойчивости остальных РЗЭ была взята из литературных данных, полученных потенциометрическим методом, и равна 21,47 [1].

Экспериментальная процедура состояла в приготовлении растворов,

содержащих комплексонат неодима(III) и нитрат исследуемого РЗЭ в различных соотношениях, не слишком сильно отличающихся от соотношения 1:1, и установке у полученных растворов рН 4,0. Указанная величина рН является оптимальной, так как гидролиз ионов РЗЭ

в этой среде незначителен, а их взаймодействие с ЭДТФ приводит исключительно к образованию комплексов состава LnL^{5-} . Иначе говоря, можно считать, что в растворе устанавливается следующее равновесие: $NdL^{5-} + Ln^{3+} \leftrightarrow LnL^{5-} + Nd^{3+}$ (2)

Константа равновесия K_p процесса (2) может быть легко вычислена:

$$K_{p} = \frac{[LnL^{5-}][Nd^{3+}]}{[NdL^{5-}][Ln^{3+}]} = \frac{[Nd^{3+}]^{2}}{(C_{Nd} - [Nd^{3+}])(C_{Ln} - [Nd^{3+}])} = \frac{K_{LnL}}{K_{NdL}}, (3)$$

Таблица 1. Константы устойчивости комплексов РЗЭ с ЭДТФ

РЗЭ	Lg K _{LnL}	Lg K _{LnL} (найдено нами)
La	20,15	$20,27 \pm 0,09$
Ce	-	$20,58 \pm 0,10$
Pr	21,00	$21,15 \pm 0,12$
Nd	21,47	-
Sm	22,39	$22,27 \pm 0,10$
Eu	22,40	$22,35 \pm 0,09$
Gd	21.80	$22,06 \pm 0,12$
Tb	-	$21,82 \pm 0,10$
Dy	21,80	$21,56 \pm 0,11$
Но	21,85	21.55 ± 0.10
Er	21,62	$21,38 \pm 0,12$
Tm	21,73	$21,45 \pm 0,10$
Yb	-	$21,36 \pm 0,09$
Lu	-	$21,45 \pm 0,10$
Y	-	$21,68 \pm 0.12$

аналитические (общие) так как концентрации неодима(III) C_{Nd} исследуемого РЗЭ C_{Ln} известны заранее из состава исследуемого раствора, а величину $INd^{3+}1$ определяли ИЗ результатов экспериментов, состоявших в измерении оптической плотности растворов при длине волны 427,3 нм, соответствующей максимуму светопоглощения аквокомплексов Nd^{3+} -aq. Для ее определения был построен градуировочный график зависимости оптической плотности растворов, содержащих Nd(III), от концентрации Nd(III) в них при указанной длине волны. Наконец, после того, как K_p была вычислена, а величина K_{NdL} взята из литературных данных [1], рассчитывали K_{LnL} . Определенные нами величины $\log Nd(III)$

Кыл, для всех комплексов РЗЭ с ЭДТФ, а также литературные данные, представлены в табллице 1. Как видно из табл. 1, найденные нами значения K_{InI} для РЗЭ цериевой подгруппы хорошо совпадают с аналогичными значениями, найденными ранее [3], а наблюдаемые различия определяются прежде всего погрешностью экспериментов. Что же касается РЗЭ иттриевой подгруппы, там наблюдаются заметно большие различия между нашими и литературными данными (до 0,3-0,4 ед. $lg~K_{LnL}$), которые уже не могут быть объяснены одними лишь экспериментальными погрешностями. Такое явление уже наблюдалось раньше [3, 4] систем P3.3 при изучении этилендиаминдиянтарная кислота (ЭДДЯК) и для его объяснения было высказано предположение об образовании гетеробинуклеарных комплексов Nd и

$$K_{NdLnL} = \frac{[NdLnL^{2-}]}{[Nd^{3+}][Ln^{3+}][L^{8-}]} = \frac{(C_{NdL} - [Nd^{3+}] - [NdL^{5-}])K_{LnL}}{[Nd^{3+}]} \{ 6)$$

Величину $[NdL^{5-}]$, необходимую для вычислений по формуле (6), находили с помощью градуировочного графика зависимости оптической плотности раствора от его концентрации при длине волны 428,8 нм, соответствующей максимуму светопоглощения комплекса NdL^{5-} . Этот график имел вид наклонной прямой линии и здесь не представлен.

Для приблизительной оценки влияния образования комплексов $NdLnL^2$ на точность найденных нами значений K_{LnL} мы произвели расчеты для систем, в которых Ln = La (цериевая подгруппа) или Tm (иттриевая подгруппа).

В первом случае результаты расчета привели к получению статисти- K_{NdLaL} ческого нулевого результата, что соответствует наблюдаемом совпадению наших результатов определения K_{LaL} и литературных данных для этой величины (табл. 1). Во втором случае для комплекса K_{NdTmL} было получено значение порядка 10^{22} , а попытка учесть эту величину при опять-таки привели расчете K_{TmL} практически полной идентичности полученных нами результатов литературных данных.

исследуемого РЗЭ состава $NdLnL^{2-}$ которое и приводит к снижению вычисленных значений K_{LnL} :

$$Nd^{3+} + LnL^{5-} \leftrightarrow NdLnL^{2-}$$
 (4)

В самом деле, протекание этого процесса должно привести к снижению $[\mathrm{Nd}^{3+}]$ и, как следствие (см. уравнение (3)), к уменьшению вычисленных значений K_p и K_{LnL} . Таким образом, встает вопрос о вычислении константы устойчивости комплексов K_{NdlnL} :

$$K_{NdLnL} = \frac{[NdLnL^{2-}]}{[Nd^{3+}][Ln^{3+}][L^{8-}]} (5)$$

После несложных преобразований и сочетания уравнений (3) и (5), а также с учетом уравнений материального баланса и констант устойчивости комплексов K_{NdL} и K_{LnL} было получено следующее уравнение, непосредственно использованное для расчета K_{NdLnL} :

Таким образом можно считать доказанным, что в системах Nd^{3+} - Ln^{3+} - ЭДТФ происходит образование гетеробинуклеарных комплексов, если Ln - элемент иттриевой группы, и не происходит их образования, если Ln - элемент цериевой подгруппы. Образование смешанных комплексов с участием Nd^{3+} и P3 Э иттриевой подгруппы приводит к погрешности в расчете констант устойчивости комплексов LnL^{5-} порядка - 0,2...-0,3 ед. lg~K.

СПИСОК ЛИТЕРАТУРЫ:

1. Дятлова Н.М., Темкина В.Я., Колпакова И.Д. Колпакова. Комплексоны. – М.: «Химия»: 1970. – 417 с.

2.Координационная химия редкоземельных элементов (под ред. В.И. Спицына и Л.И. Мартыненко). – М.: Изд. Моск. ун-та: 1979. - 254 с.

3. Майорова Л.А., Горелов И.П. О возможности применения конкурентного варианта метода спектрографии высокого разрешения для изучения комплексообразования РЗЭ // Сборник научных трудов «Химия комплексонов и их применение», Калинин, 1986. С. 54-58.

4. Терновая Т.В. Конкурентный спектрографический метод определения устойчивости комплексов РЗЭ в водных

растворах // Теорет. и экспер. химия. – 1984. - Т. 14. - № 3. – С. 461-464.

An application of the competitive spectrographic method for the determination of stability constant5latnt5l19819819819