ученых по математике и физике. Уфа, РИО БашГУ, 2003. С.107-108.

КОНФОРМАЦИОННЫЙ АНАЛИЗ 1,3-ДИОКСАНА И ЕГО ОКСОНИЕВОГО ИОНА

Курамшина А.Е., Мазитова Е.Г., Кузнецов В.В. Уфимский государственный нефтяной технический университет, Уфа

При протонировании 1,3-диоксанов - ценных в практическом отношении кислородсодержащих гетероаналогов циклогексана, – а также других 1,3- и 1,3,2-гетероциклов образуются циклические оксониевые ионы. Последние являются интермедиатами в многочисленных гетеролитических реакциях с участием циклических борных эфиров, 1,3-диокса-2-

силациклогексанов, циклических ацеталей, катализируемых кислотами, в результате которых образуются сложные эфиры, 1,3-диолы и другие ценные продукты органического и нефтехимического синтеза [1,2]. Вместе с тем в условиях эксперимента оксониевые ионы можно обнаружить лишь при температурах ниже -50°C, что затрудняет использование физикохимических методов для определения тонких особенностей их структуры. В этой связи весьма актуальным становится изучение строения и конформационного поведения данных частиц с помощью квантовохимических методов исследования. В частности, указанный подход оказался весьма плодотворным при анализе механизмов реакций 1,3-диоксанов и 1,3,2-1,3-диокса-2диоксаборинанов, также а гетероциклогексанов с нитрилами, где циклические оксониевые ионы образуются уже на первой стадии реакции [2-4].

$X = CH_2$, B-R, SiR₂, S=O, As(O)C₆H₅, GeR₂

Полученные данные выявили необходимость детального анализа путей конформационной изомеризации молекул протонированной формы 1,3- и 1,3,2гетероциклов, сведения о которых до настоящего времени в литературе отсутствуют. В этой связи целью настоящей работы является конформационный анализ протонированной формы незамещенного 1,3диоксана 1 - оксониевого иона 2 – с помощью неэмпирических методов STO-3G и 6-31G** в рамках программного обеспечения HyperChem [5].

На первой стадии работы нами с помощью неэмпирических методов STO-3G и 6-31G исследована поверхность потенциальной энергии (ППЭ) незамещенного 1,3-диоксана 1. Согласно литературным данным молекулы этого соединения в растворах пребывают в состоянии быстрой в шкале времен ЯМР интерконверсии цикла с величиной потенциального барьера 9.7-10.1 ккал/моль [6]. Вероятные пути конформационной изомеризации диоксана **1**, моделируюшие поведение его молекул в газовой фазе, представлены ниже.

Таблица	 Энергетические па 	раметры инверси	а К⇔К*	(ккал/моль)
---------	---------------------------------------	-----------------	--------	-------------

Методы	Параметры	2,5-T	1,4-T	ПС-1	ПС-2
STO-3G	ΔE	3,6	4,5	-	-
	ΔE^{\neq}	-	-	6,9	5,3
6-31G	ΔΕ	4,4	4,8	-	-
	ΔE^{\neq}	-	-	8,7	5,0

Полученные данные свидетельствуют о двух вероятных маршрутах конформационной изомеризации $K \leftrightarrow K^*$, из которых несколько более предпочтителен идущий через промежуточный минимум 2,5-Т. Отме-

ченные гибкие формы способны превращаться друг в друга через переходное состояние ПС-2. Основному максимуму на ППЭ (ПС-1) отвечает форма *софы* [7].

Аналогичный подход был использован для проведения конформационного анализа протонированной формы 1,3-диоксана в условиях, моделирующих состояние молекулы в газовой фазе. В результате расчетов установлено, что на ППЭ иона 2 присутствуют два конформера *кресла* с аксиальной (**Ка**) и экваториальной (**Ke**) ориентацией протона при атоме O-1 (из которых **Ka** отвечает главному минимуму), а также конформеры 1,4-*твист*-формы (**1,4-Та и 1,4-Те**), со-ответствующие вместе с **Ke** локальным минимумам на ППЭ.

Возможные маршруты интерконверсии **Ка**« **Ке** представлены на схемах 1 и 2, а относительные энергии минимумов (ΔE) и максимумов (ΔE^{\neq}) – в таблице 2.

Таблица 2. Энергетические параметры инверсии	Ка«	Ке	(ккал/моль))
--	-----	----	-------------	---

					/			
Методы	Параметры	Ка	Ке	1,4-Ta	1,4-Te	ПС-1	ПС-2	ПС-3
STO-3G	ΔΕ	0	1.7	2.5	4.3	-	-	-
	ΔE^{\neq}	-	-	-	-	10.9	7.2	8.2
6-31G**	ΔΕ	0	17	2.0	4.2	-	-	-
	ΔE^{\neq}	0	1.7	2.9	4.5	13.2	7.5	11.3
			11	0				

Переходные состояния (ПС)

Схема 2. Результаты расчета методом 6-31G**

Нетрудно видеть, что конформационная изомеризация Ка« Ке предполагает два маршрута, из которых путь Ка↔1,4-Та↔Ке более предпочтителен из-за менее высокого барьера инверсии ПС-2 по сравнению с **ПС-1**. В рамках расчетной идеологии обоих методов концентрация альтернативного *кресла* **Ке** выше, чем форм **1,4-Та** и **1,4-Те**. В то же время конформационное равновесие заметно смещено в сторону формы Ка.

Содержание конформера Ка при 20 0 С должно составлять не менее 95%. Можно также утверждать, что барьер процесса конформационной изомеризации *кресло-кресло* 1,3-диоксана **1**, заметно ниже, чем у его оксониевого иона **2** (STO-3G, 6.9 и 10.9 ккал/моль соответственно). Таким образом, протонирование одного из кислородных атомов кольца не только приводит к появлению невырожденной по энергии альтернативной формы *кресла*, но и заметно повышает барьер инверсии цикла в газовой фазе.

СПИСОК ЛИТЕРАТУРЫ

1. Итоги науки и техники. Технология органических веществ. Т.5. Химия и технология 1,3диоксациклоалканов / Д.Л. Рахманкулов, Р.А. Караханов, С.С. Злотский и др. // М.: ВИНИТИ, 1979. - 288 с.

2. Кузнецов В.В. Автореф. дисс. докт. хим. наук. – Уфа, 2002. – 47 с.

3. Кузнецов В.В. //Журн. орг. химии. – 2000. -Т.36, вып. 7. - С.1097-1098.

4. Кузнецов В.В. //Теорет. эксперим. химия. - 2000. - Т.36, № 3. - С.159-161.

5. HyperChem 5.02. Trial version. www.hyper.com.

6. Внутреннее вращение молекул / под ред. В.Дж. Орвилл-Томаса. М.: Мир, 1975. – С.355.

7. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. Четвертая Всероссийская научная internetконференция "Компьютерное и математическое моделирование в естественных и технических науках". Тамбов, 2002. - Вып. 18. - С.54.

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ 2-ОКСО-1,3-ДИОКСАНА

Курамшина А.Е., Бочкор С.А., Кузнецов В.В. Уфимский государственный нефтяной технический университет, Уфа

Известно, что главному минимуму на ППЭ 1,3диоксанов – интересных в стереохимическом отношении гетероаналогов циклогексана - отвечает конформер кресла. В то же время появление вблизи гетероатомов кислорода карбонильной группы, характеризуемой повышенной р-л-электронной плотностью, должно привести к существенной перестройке электронных и пространственных влияний в гетероатомной части кольца и. как следствие. вызвать изменение характера преимущественной конформации цикла. В работах [1-6] было показано, что для молекул этих соединений характерна конформация кресла с преимущественно экваториальной ориентацией алкильных заместителей в углеродной части кольца. В то же время данные о компьютерном моделировании процесса конформационной изомеризации молекул циклических карбонатов в литературе отсутствуют.

В этой связи нами в рамках пакета HyperChem [7] методом Хартри-Фока с помощью полуэмпирического (AM1) и неэмпирических (STO-3G и 6-31G) приближений исследована поверхность потенциальной энергии (ППЭ) молекулы 2-оксо-1,3-диоксана (1).

Таблица 1. Энергетические параметры инверсии $C\hat{U}C^*$ (ккал/моль)

Метод	AM1	PM3	STO-3G	6-31G
ΔE^{\neq}	0.9	1.9	0.5	1.3

Полученные данные, моделирующие конформационное поведение молекул обсуждаемого соединения в газовой фазе, свидетельствуют о присутствии на ППЭ двух вырожденных по энергии минимумов, отвечающих конформерам *софы* (*C и C**), и переходного состояния, соответствующего 2,5-*твист*-форме (2,5-*T*). Обращает внимание сравнительно невысокая величина барьера активации ΔE^{\neq} , полученная в рамках всех использованных расчетных методов.

Характер ППЭ соединения 1 отличается от наблюдаемого для незамещенного 1,3-диоксана (2) не только характером основного минимума и числом локальных минимумов и максимумов (см. схему), но и величиной активационного барьера конформационной изомеризации $K \leftrightarrow K^*$, составляющего в последнем случае по данным *ab initio* приближений STO-3G и 6-31G 6,9 и 8,7 ккал/моль соответственно [8]. С другой стороны конформационное поведение молекул 2оксо-1,3-диоксана идентично наблюдаемому для представителя шестичленных циклических эфиров борных кислот – 1,3,2-диоксаборинана (3), ППЭ которого также содержит только один максимум – 2,5*твист*-форму [9,10].