Анализ результатов наших исследований показывает, что стойкие изменения в обмене веществ в организме наблюдаются только у норок, содержащихся на нижнем ярусе батареи клеток ангара, где содержание аммиака более высокое, чем в шеде. Это обстоятельство вызвало необходимость разработать специальные мероприятия по обеспечению нормального уровня загазованности в закрытом неотапливаемом помещении:

- усиление вентиляции в периоды положительных температур атмосферного воздуха открытие боковин ангара, оконных фрамуг и дверей;
- реконструкция четырехъярусных батарей клеток в трехъярусные;
- увеличение высоты расположения нижнего яруса батарей клеток от пола помещения до 60 см против 40 см в первом варианте конвейера;
- модернизация системы удаления навоза и кормовых остатков по средством скребков, стационарно прикрепленных к движущимся по замкнутому кольцу выгулам, с последующим гидросмывом;
- введение двухразовой смены воды в поилках зверей.

Проведенный комплекс мероприятий позволил существенно изменить содержание аммиака в воздухе ангара. В зимний период этот показатель составлял от 0 до 12 мг/м. При этом таким высоким он зарегистрирован лишь однажды, в день, когда была произведена последняя предзимняя уборка навоза и кормовых остатков. По ярусам клеток количество аммиака на уровне пола нижнего яруса клеток колебалось от 2,5 до 12,0 мг/м, на втором ярусе - не выше 8,0, а на верхнем - не более 6,0 мг/м. Среднесуточное содержание аммиака в воздухе ангара на уровне пола всех трех ярусов клеток имело колебания, но они были меньше, чем таковые в зимний период предыдущего года.

Этот показатель по неделям зимнего периода находился в пределах от 1,50 до 7,0 мг/м, т.е. в среднем

составлял 5,5 мг/м, вместо 13,2 мг/м и 9,0 мг/м в зимние периоды предыдущих лет.

Основные дни резких перепадов среднесуточного содержания аммиака в воздухе ангара приходились на весеннее и осеннее время - от 2,0 до 6,0 мг/м.

Самым нестабильным месяцем по содержанию аммиака в воздухе закрытого помещения оказался апрель - концентрация аммиака колебалась в пределах 0,5 ... 7,0 мг/м.

В летний период самое высокое содержание этого газа - 12,5 мг/м - зарегистрировано 2 июля. В предыдущий день проводилась уборка навоза.

Среднесуточная концентрация аммиака в воздухе ангара по неделям летнего периода колебалась от 1,0 до 7,0 мг/м. Между тем этот показатель, в летний период предыдущих лет составил от 1,0 до 12,5 мг/м и от 2,50 до 11,50 мг/м.

В целом же за исключением дней уборки навоза среднесуточный уровень аммиака в воздухе ангара в летний период находился в пределах 1,0-5,5 мг/м. Такое содержание газа регистрируется в летний период в шедах и межшедовом пространстве на уровне 60 см от земли, особенно в дни после прошедшего дождя, при температуре воздуха выше 20°С.

Таким образом, благодаря реализации разработанного комплекса мероприятий содержание аммиака в воздухе ангара было близко к таковому при традиционной технологии выращивания норок.

В результате исследований был разработан управляемый режим концентрации аммиака в воздухе закрытого не отапливаемого помещения, как важного элемента его микроклимата.

Работа представлена на VI научную конференцию «Успехи современного естествознания», 27-29 сентября 2005 г. ОК "Дагомыс" (Сочи). Поступила в редакцию 05.08.2005 г.

Технические науки

РЕЗУЛЬТАТЫ ОЦЕНКИ АНТИМУТАГЕННЫХ СВОЙСТВ РАЗЛИЧНЫХ АНТИОКСИДАНТОВ

Петрова О.А., Липатов Г.Я., Адриановский В.И., Береснева О.Ю. Уральская государственная медицинская академия, Екатеринбург

Поиск новых биологически активных веществ, повышающих устойчивость организма к воздействию вредных факторов окружающей среды, является актуальной медико-экологической проблемой. К настоящему времени накоплены многочисленные данные, свидетельствующие о способности антиоксидантов оказывать защитный эффект при контакте с различными, в том числе канцерогенными факторами производства. Рабочие, занятые в пирометаллургии никеля, находятся под воздействием комплекса вредных факторов, среди которых ведущее место занимают промышленные аэрозоли с высоким содержанием малорастворимых соединений никеля. Многочисленные

эпидемиологические и экспериментальные исследования свидетельствуют о канцерогенной опасности процессов получения никеля, связанной, прежде всего, с выраженными мутагенными свойствами никеля и его соединений.

Целью нашего исследования было явилось сравнительную оценку антимутагенной активности различных антиоксидантов (комплекс витаминов A и E, β-каротин, тамерит) в условиях воздействия пыли никелевого производства.

Материалы и методы исследования. Мутагенные свойства пыли никелевого производства и антимутагенное действие витаминов А и Е, β-каротина и тамерита изучались в микроядерном тесте на клетках костного мозга мышей. Для постановки микроядерного теста были использованы 150 инбредных мышей (самцов) массой 18-22 г., разделенных на 5 групп. Животные первой группы получали с пищей β-каротин в дозе 10 мг/кг, вторая – тамерит в дозе 5 мг/кг, третья – комплекс витаминов А и Е в дозе 60

МЕ витамина А и 0,06 мг витамина Е в сутки. Мыши четвертой группы получали обычный рацион. Через 2 недели после начала кормления всем мышам групп 1-4 однократно внутрибрюшинно вводилась взвесь пыли, отобранной в виде смётов с оборудования обжиговосстановительного цеха ОАО «Уфалей-Никель». Согласно данным рентгеноструктурного анализа основным компонентом пыли является гарниерит (MgNi)₄•Si₄O₁₀•(OH)₄•4H₂O. Содержание никеля в образце пыли составило 47%. Спустя 24 ч животные забивались, и из их костного мозга делались мазки, в которых подсчитывались полихроматофильные эритроциты с микроядрами. Животным пятой группы внутрибрюшинно вводился физ. раствор.

Результаты. Как и ожидалось, образец никельсодержащей пыли продемонстрировал в эксперименте выраженные мутагенные свойства. Так, спустя сутки после введения пыли число микроядер на 1000 полихроматофильных эритроцитов составило 7.4 ± 1.3 . В контрольной группе этот показатель составил 1.7 ± 0.2 (p<0,05). Все исследуемые антиоксиданты проявили антимутагенную активность. Однако степень их антимутагенного действия оказалась различной. Так, у мышей, в течение двух недель получавших тамерит,

введение пыли введение пыли привело к образованию 5.2 ± 0.5 микроядер на 1000 клеток. Аналогичную антимутагенную активность показал и β -каротин: 5.3 ± 2.3 соответственно. Наиболее выраженные антимутагенные свойства продемонстрировал комплекс витаминов A и E: 3.5 ± 0.9 (p<0.05).

Выводы. Применение антиоксидантов уменьшает цитогенетический эффект никельсодержащих пылей, о чем свидетельствует снижение образования микроядер в полихроматофильных эритроцитах костного мозга мышей, получавших комплекс витаминов А и Е, β-каротин, тамерит. Из тестируемых антиоксидантов наибольший антимутагенный эффект показал комплекс витаминов А и Е. Это открывает перспективы для использования препаратов, содержащих комплекс витаминов А и Е, в качестве средства биопрофилактики канцерогенной опасности для рабочих, занятых в пирометаллургии никеля.

Работа представлена на научную заочную электронную конференцию «Биологически активные соединения: получение, свойства, структура, функции, применение» 15-20 августа 2005 г. Поступила в редакцию 12.07.2005 г.

Педагогические науки

ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ КУЛЬТУРЫ ПИТАНИЯ

Зерщикова Т.А., Флоринская Л.П. Белгородский государственный университет, Белгородский университет потребительской кооперации, Белгород

В современной литературе часто указывается на недостаток здоровья подростков, что не может не отражаться на их учебной деятельности. Эти отклонения специалисты связывают, прежде всего, с условиями окружающей среды и отсутствием психологических установок на здоровый образ жизни молодежи. К последнему следует отнести не только раннее курение, употребление спиртных напитков, наркоманию и токсикоманию, но и нерегулярное, экологически неправильное питание. В структуре заболеваемости подростков по данным НИИ гигиены и охраны здоровья детей и подростков РАМН, заболевания органов пищеварения, связанные с ухудшением экологической обстановки и несоблюдением гигиены питания, составляют не менее 12 - 13 % на состояние 1997 - 2002 г.г. Приведенные данные касались выпускников школ, но эта проблема остро стоит и перед высшей школой, поскольку здоровье студентов и экология их питания традиционно неадекватны здоровому образу жизни.

В связи с этим возникла необходимость проведения анализа экологических и гигиенических аспектов питания студентов – первокурсников с целью выявления негативных тенденций и их коррекции. Анкетирование было произведено среди студентов Белгородского государственного университета и Белгородско-

го университета потребительской кооперации. Вопросы анкеты касались того, учитывается ли экология выращивания продукции и экологическая обстановка в данной местности, наличие трансгенных компонентов в ее составе, ориентация на рекламу СМИ при приобретении товара и т.д.

Результаты анкетирования показали, что студенты экологически неграмотно, к сожалению, относятся к своему питанию. Так, например, 52,6 % респондентов ориентируются на рекламу СМИ при выборе продуктов питания и столько же - на вкусовые качества продукции безотносительно экологической чистоты продукта. Как известно, реклама СМИ не всегда отражает действительные качества рекламируемых товаров, а их экологическая характеристика зачастую просто умалчивается. Приятно отметить, что 89,4 % опрошенных все же предпочитают продукцию домашнего приготовления за вкусовые и экологические качества. Однако, они игнорируют тот факт, что при выращивании растений используются ядохимикаты и пестициды, причем с нарушением норм расхода. Следовательно, такую продукцию трудно считать экологически безопасной.

Необходимо отметить, что в рационе питания студентов преобладают продукты быстрого приготовления или готовые: концентраты «Ролтон» - 36,8 %, столько же — консервы, готовые пельмени, супы и замороженные овощи. Особую группу составляют сухарики, чипсы и напитки, так как у студентов они являются основным средством утоления голода и занятия времени, но в качестве продуктов питания ими не рассматриваются.

Анализ режима и качества питания сегодняшних студентов показывает, что в 60 – 70 % случаев име-