СОСТОЯНИЕ И ПРОБЛЕМЫ АВТОМАТИЗАЦИИ ПРОЦЕССОВ НЕПРЕРЫВНОГО ДОЗИРОВАНИЯ СЫПУЧИХ МАТЕРИАЛОВ

Сажин С.Г., Смирнов И.В. Нижегородский государственный технический университет Дзержинский политехнический институт (филиал) Дзержинск, Россия

CONDITION AND PROBLEMS OF AUTOMATION DOSING PROCESSES OF LOOSE MATERIALS

Prof. Sazhin S., Smirnov I. NN State Technical University Dzerzhinsk, Russia

Непрерывно-поточное дозирование материалов является операцией многих технологических процессов. От правильной организации процессов непрерывно-поточного дозирования, в частности от применяемых конструкций дозирующих устройств и алгоритмов управления ими, во многом зависят качество готовой продукции, экономия материалов, повышение производительности труда, обеспечение высококачественного ведения технологического процесса. Одной из разновидностей непрерывно-поточного дозирования является добавление к основной массе сырья дополнительного компонента в заданном соотношении (ставится задача поддержания соотношения двух расходов сыпучих материалов).

Современные требования к качеству получаемого исходного сырья требуют обеспечивать соблюдение пропорции не только по суммарному количеству материалов, но и текущую пропорцию между подаваемыми материалами для лучшего их смешивания перед основным технологическим процессом.

Существующие конструкции дозаторов, применяемые в различных производствах и системы управления ими, имеют ряд существенных функциональных ограничений:

- 1. Непрерывное дозирование материалов в заданной пропорции без компенсации интегральной ошибки подаваемых материалов;
- 2. Непрерывное дозирование материалов в заданной пропорции без учета требований по обеспечению текущей пропорции между материалами;
- 3. Непрерывное дозирование материалов исходя из заранее заданной дозы одного материала, проходящего по конвейеру, что применимо только для ряда производств;
- 4. Компенсация интегральной ошибки путем изменения скорости конвейера ведущего материала, что также не применимо для ряда производств;
- 5. Сложность и дороговизна дозирующих установок для обеспечения требуемого соотношения двух расходов сыпучих материалов;
- 6. Дозирование материалов без учета изменения их свойств (влажность, дисперсность), что оказывает существенное влияние на работу систем управления непрерывно-поточными дозаторами и качество получаемой смеси.

Все вышесказанное определяет актуальность постановки работ по созданию дозаторов непрерывного действия с расширенными функциональными возможностями. Одним из путей решения этой задачи является разработка адаптивных систем управления дозаторами. Применение таких систем в процессах дозирования позволит учесть недостаток априорной информации об условиях последующей эксплуатации оборудования, изменения свойств исходного сырья и характеристик объекта в процессе эксплуатации.

До последнего времени развитие адаптивных систем автоматического управления сдерживалось вследствие ряда причин:

- 1. Отсутствия серийно выпускаемых промышленностью приборов для непрерывного измерения параметров качества продуктов и исходного сырья;
- 2. Громоздкости адаптивных систем управления, реализованных на традиционных технических средствах автоматики, приводящей к снижению их работоспособности;
- 3. Высокой трудоемкости разработки адаптивных систем управления ввиду большого разнообразия задач непрерывно-поточного дозирования и особенностей технологических процессов для различных производств;
- 4. Высокой стоимости адаптивных систем управления, реализованных на традиционных технических средствах.

Решение перечисленных задач упрощается в случае использования в качестве технической базы для реализации адаптивных систем управления микропроцессорной техники, в частности, микропроцессорных управляющих контроллеров.

Одним из процессов, где требуется обеспечивать соотношение расходов, является непрерывное добавление стекольного боя к шихте в производстве стекла. Для повышения точности дозирования потребовалось разработать адаптивную систему управления непрерывно-поточным дозатором, обеспечивающую оптимальный режим работы дозатора нестационарности его статических характеристик и технологических параметров процесса. Разработанная система управления является комбинированной системой управления, в которой контур, работающий по возмущению, обеспечивает соблюдение текущей пропорции подаваемых материалов, а контур по отклонению компенсирует интегральную ошибку. Контур по возмущению использует в математическую модель питателя вибрационного типа. разработанный алгоритм коррекции параметров математической модели минимизирует влияние флуктуаций свойств дозируемого стекольного боя на точность дозирования.

Разработка адаптивной системы управления непрерывно-поточным дозатором для добавления стекольного боя к шихте позволила повысить качество шихты (и стекла, соответственно), снизить перерасходы подачи материалов, позволила проводить непрерывное дозирование в сложных производственных условиях, а также применять дозаторы, оснащенные такой системой управления для других отраслей промышленности.