связано с биохимическими процессами в водоеме: уменьшение температуры ведет к снижению скорости реакций, а значит и к понижению концентрации кислорода в воде, что вызывает значительное уменьшение численности фитомастигин, а иногда и полное их исчезновение.

Таким образом, данные этого исследования показывают одну из основных причин сезонной динамики численности фитомастигин в Астраханской области, так как в течение года температура воды в водотоках области варьирует от 4 до 28^{0} С, а местами от 0 до 30^{0} С. Эти данные в настоящее время применяются некоторыми рыбоводными заводами при выращивании молоди рыб для избегания массовой гибели путем токсикации продуктами жизнедеятельности фитомастигин.

ВЛИЯНИЕ СОЕДИНЕНИЙ РТУТИ НА АКТИВНОСТЬ АЛАНИНТРАНСАМИНАЗЫ

Кубракова М.Е., Куксенко Д.А. Ростовский Государственный медицинский университет, Ростов-на-Дону

Соединения ртути применяются в различных отраслях хозяйственной деятельности человека, что является существенным фактором загрязнения экосистем. Источником органических и неорганических соединений ртути служат производства, связанные с обогащением руд; изготовлением красителей, фармацевтических препаратов; некоторых взрывчатых веществ; эти вещества так же применяются в сельском хозяйстве в виде инсектицидов, пестицидов, фунгицидов и т.д. Среднестатистические выбросы соединений ртути в окружающую среду составляют: воздух – 48%, вода – 40%, пищевые продукты – 12%. Эти экзотоксиканты попадая в живые организмы вызывают ряд нарушений.

В связи с вышеизложенным, целью настоящего исследования было изучить влияние ацетата ртуги в различных концентрациях на активность фермента аланинтрансаминазы (К.Ф. 2.6.1.2.). Аланинтрансаминаза (АлАТ) катализирует реакцию трансаминирования между аланином и а-кетоглутаратом. Локализован этот фермент в цитозоле клеток многих органов, но наибольшее его количество обнаружено в клетках печени. В результате работы этого фермента азот многих аминокислот переходит в состав глутамата. Это очень важно, т.к. только глугамат в тканях млекопитающих подвергается прямому окислительному дезаминированию с выделением молекулы аммиака, и последующим удалением его из организма в виде мочевины. Нарушение реакций трансаминирования аминокислот приводит к нарушению обмена аминокислот и белков организма.

Материалом исследования служила сыворотка крови, полученная от практически здоровых женщин в возрасте 21-35 лет. Исследовали изменение активности АлАТ (in vitro) под действием ацетата ртуги в концентрациях: 10⁻³ и 10⁻⁶моль/л. Условия проведения эксперимента: определяли активности фермента сразу после внесения вещества в сыворотку крови, а затем

пробы инкубировали при температуре 36,6-36,8 °C (приближено к физиологическим условиям), и определяли активность каждые 30 минут от начала эксперимента в течение пяти часов. Определение активности АлАТ проводили с помощью набора реагентов производства фирмы «Лахема» (Чехия); активность выражали в мккат/л.

В результате проведенного опыта установлено, что активность фермента в интактной сыворотке составила в среднем $0,223 \pm 0,012$ мккат/л (в норме активность фермента составляет 0,120-0,880 мккат/л), и достоверно не изменялась в течение эксперимента. Достоверное снижение активности АлАТ (р≥99%) отмечали сразу после внесения ацетата ртути в концентрации 10^{-3} моль/л – на 36%, а через 30 минут – на 62% (0,186 \pm 0,013 мккат/л и 0,086 \pm 0,012 мккат/л соответственно). Причем через 30 минут активность падала ниже нормальных показателей. При дальнейшем наблюдении отмечали снижение активности фермента и к концу эксперимента она достигла 0,022±0,007 мккат/л.При внесении ацетата ртути в концентрации 10^{-6} моль/л — достоверное ингибирование активности фермента (р≥95%) отмечали спустя 4 часа от начала эксперимента. Активность фермента в этом случае снизилась на 17% (0,136 \pm 0,012 мккат/л) и имела дальнейшую тенденцию к снижению.

Таким образом, наше исследование выявило ингибирующее влияние ацетата ртуги на активность аланинаминотрансферазы. Причем этот эффект отмечается как в высокой $(10^{-3}$ моль/л), так и в низкой $(10^{-6}$ моль/л) концентрации испытуемого эндотоксиканта, различия заключаются в степени ингибирования и времени проявления эффекта.

МИКРОБНЫЕ ЛИПИДЫ КАК ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ

Ткачевская Е.П.*, Конова И.В.**, Галанина Л.А.**, Сергеева Я.Э.**

* Московская государственная академия тонкой химической технологии имени М.В.Ломоносова, Москва

** Институт микробиологии им.С.Н.Виноградского Российской Академии Наук, Москва

В последние десятилетия в рамках решения экологических проблем окружающей среды возрос интерес к изучению энергетических ресурсов, заменяющих топливо на основе нефти. Этерифицированные производные жирных кислот, полученные с использованием низкомолекулярных спиртов, можно рассматривать в качестве заменителей дизельного топлива, поэтому эта группа соединений получила название «биодизель» («biodiesel»), т.е. биодизельное топливо. Следует отметить, что по сравнению с дизельным топливом (продуктом нефтепереработки) биодизельное топливо характеризуется большим содержанием кислорода и меньшим содержанием серы и так как источником данного вида топлива являются сельскохозяйственные и другие природные материалы, образовавшиеся за счет фотосинтетической фиксации углерода из атмосферного углекислого газа, то