$$e = 1 + 4pa_{9n} + \frac{2p e^2 d^2 n}{kT} \frac{1}{1 + iwt}, \ t = \frac{1}{2n} e^{\frac{U}{kT}},$$

где d — расстояние между двумя положениями равновесия, n — концентрация ионов, n — частота колебания около положения равновесия, U — высота потенциального барьера. Моделирование дает, что для того, чтобы при $n \approx 10^{21}$ см⁻³ экспериментальная кривая e(T) совпадала с теоретической, необходимо положить, что ионы металлов колеблются со сверхнизкими частотами ~ 10^5 Гц, при движении перескакивают на расстояние ~ $3.7*10^{-8}$ м, энергия активации (например, для Na) составляет U=0.15 эВ. Это говорит о том, что простая модель с ионно-миграционной поляризацией в данном случае не применима.

Более реальные результаты можно получить, если дополнительно учесть зернистость и пористость цеолитовой керамики. В этом случае диэлектрические свойства следует рассматривать как свойства гетерогенной системы с использованием формулы Лихтнекера [2]. Для смеси из $\bf N$ компонентов имеем:

$$e' = \prod_{i=1}^{N} \left[(e'_i)^2 + (e''_i)^2 \right]^{0.5x_i} \cos \left[\sum_{i=1}^{N} x_i \arctan \left(\frac{e''_i}{e'_i} \right) \right]$$

Тангенс диэлектрических потерь будет определяться как

$$\operatorname{tg} d = \frac{e''}{e'} = \operatorname{tg} \left[\sum_{i=1}^{N} x_i \operatorname{arctg} \left(\frac{e''_i}{e'_i} \right) \right]$$

где, ε' и ε'' компоненты комплексной диэлектрической проницаемости, x_i – объем занимаемый ка-

ждой компонентой,
$$\sum_{i=1}^{N} \chi_i = 1$$
.

В этом случае для простой модели двухкомпонентной системы цеолит (85%) — воздушные поры (15%) получается хорошее совпадение теоретической и экспериментальной кривых e(T) для обычных параметров ионных кристаллов: $n \approx 10^{21}$ см⁻³, $\omega \approx 10^{13}$ Гц, $\delta \approx 2*10^{-10}$ м и энергия активации составляет U = 0.24 эВ. для образца №1, U = 0.288 эВ для образца №2.

Рисунок 1. Температурная зависимость диэлектрической проницаемости на частоте 10^6 Γ ц

СПИСОК ЛИТЕРАТУРЫ

[1]. Гельман Е. М., Соробина И. Д. Ускоренные химические методы определения породообразующих элементов: Химические методы. Инструкция № 138-X / Под председ. Г. В. Остроумова. – М.: ВИМС, 1976. – 58 с.

[2]. Барышников С.В., Баранов А.Ф., Медовой А.И. Труды III международной конференции "Кристаллы: рост, свойства, реальная структура, применение", Т.2 – Александров: ВНИИСИМС, 1997.— С.402-405.

ПОТЕРИ ТОКА КОРОТКОГО ЗАМЫКАНИЯ В ФОТОЭЛЕКТРИЧЕСКИХ СТРУКТУРАХ С СУБМИКРОННЫМ N-P-ПЕРЕХОДОМ, ОБУСЛОВЛЕННЫЕ НАКОПЛЕНИЕМ НЕРАВНОВЕСНОГО ПОВЕРХНОСТНОГО ЗАРЯДА

Богатов Н.М., Матвеякин М.П., Родоманов Р.Р. Кубанский государственный университет

Технология изготовления полупроводниковых фотоэлектрических преобразователей (ФЭП) непре-

рывно совершенствуется, так что потери энергии в объеме наиболее эффективных структур сведены к минимуму. Это достигается использованием исходного полупроводникового материала, очищенного от посторонних примесей и дефектов, уменьшением толщины сильно легированных слоев, контролем физических и геометрических параметров неоднородных областей. Одной из тенденций усовершенствования ФЭП является уменьшение глубины p⁺-n-перехода до значений w_p≤0,1 мкм. В этих условиях возрастает доля потерь энергии, обусловленных процессами на поверхности И границах раздела диэлектрикполупроводник, полупроводник-полупроводник, металл-полупроводник.

Целью работы является исследование влияния неравновесного поверхностного заряда на величину внутреннего электрического потенциального барьера и ток короткого замыкания кремниевых фотоэлектрических структур с субмикронным эмиттером.

Проанализирована структура области пространственного заряда (ОПЗ) субмикронного несимметричного p-n-перехода (рис. 1). В этом случае размер части ОПЗ в p-слое совпадает с толщиной эмиттера w_p , а в n-слое — x_n много меньше толщины базы. Рас-

пределение объемного заряда зависит от плотности заряда Q_s на поверхностных состояниях внешней гра-

ницы эмиттера, концентрации акцепторов в эмиттере $N_{\rm A}$, и доноров в базе $N_{\rm D}$.

Рисунок 1. Условная схема распределения заряда Q в несимметричным p-n переходе

На рис. 2 и рис. 3 изображены рассчитанные зависимости, соответственно, величины электрического потенциального барьера ϕ и x_n от плотности поверхностного заряда Q_s при следующих параметрах p-n-перехода: $w_p=1,5\cdot 10^{-7}$ м, $N_A=10^{25}$ м $^{-3}$, $N_D=10^{21}$ м $^{-3}$. Увеличение Q_s вследствие захвата фотогенерирован-

ных носителей заряда обусловливает уменьшение модуля электрического потенциального барьера р-n-перехода и размера ОПЗ в n-слое. Влияние этого эффекта на потери тока короткого замыкания планарных кремниевых фотоэлектрических структур исследовано теоретически и экспериментально.

Рисунок 2. Зависимость величины потенциального барьера от плотности поверхностного заряда

Рисунок 3. Зависимость размера ОПЗ в п-слое от плотности поверхностного заряда

В неравновесном случае $Q_s = Q_{s0} + \Delta Q_s$. Индекс "0" обозначает равновесное значение соответствующей величины. Неравновесная плотность поверхностного заряда ΔQ_s индуцирует падение напряжения на p-п-переходе

$$V_{s} = \frac{(w_{p} + x_{n0})}{ee_{0}} \Delta Q_{s} - \frac{1}{2} \frac{\Delta Q_{s}^{2}}{ee_{0} q N_{D}},$$
 (1)

где ϵ – диэлектрическая проницаемость, ϵ_0 – электрическая постоянная, q – элементарный заряд. В

правой части выражения (1) второе слагаемое меньше первого для допустимых значений физических величин.

Полное падение напряжения на p-n-переходе в режиме электрической нагрузки

$$V=U+V_s+IR_s$$
, (2)

где U — напряжение на контактах прибора, I — электрический ток, R_s — сосредоточенное последовательное сопротивление. В режиме короткого замыкания (U=0) ток $I_{\kappa 3}$ вычисляется по формуле

$$I_{\kappa 3} = I_{ph} - I_{0} \left(\exp \left\{ \frac{q(V_{s} + I_{\kappa 3} R_{s})}{kT} \right\} - 1 \right) - I_{r} \left(\exp \left\{ \frac{q(V_{s} + I_{\kappa 3} R_{s})}{akT} \right\} - 1 \right) - \frac{V_{s} + I_{\kappa 3} R_{s}}{R_{sh}},$$
(3)

где I_{ph} — фототок, I_0 — диффузионный ток насыщения, k — постоянная Больцмана, T — температура, I_r — рекомбинационный ток насыщения, a — коэффициент неидеальности p-n-перехода, R_{sh} — шунтирующее сопротивление [1]. В стационарном случае

$$\Delta Q_s \approx \frac{q N_{sf} I_{ph}}{I_{ph} + b} \,, \tag{4}$$

где $N_{\rm sf}$ — плотность состояний в окрестности уровня Ферми в энергетическом зазоре шириной ~kT, коэффициент β характеризует скорость захвата неравновесных носителей заряда.

 $m I_{3}$ (1–4) следует, что $\rm I_{k3}$ нелинейно зависит от $\rm I_{ph}$, причем разность этих величин определяется величиной неравновесного поверхностного заряда. Эта зависимость продемонстрирована на рис. 3. Концентрация излучения $\rm X$ определялась с помощью эталонного

ФЭП с глубоким p-n-переходом, у которого $I_{\kappa 3} \approx I_{ph0} X$. Исследовались кремниевые ФЭП со структурой p^+ -n- n^+ или n^+ -p- p^+ типа, глубиной p-n-перехода $w_p \approx 0,15$ мкм, текстурированной поверхностью, на которую наносилось пассивирующее просветляющее покрытие SiO_2 . Экспериментальная зависимость $I_{\kappa 3}(X)$ для исследуемого ФЭП аппроксимировалась по формуле (3). Для этого параметры $I_{ph} = I_{ph0} X$, I_0 , I_r , a, R_s , R_{sh} определялись из данных измерений темновых и световых вольтамперных характеристик [2]. Оценка спектральной плотности поверхностных состояний в окрестности уровня Ферми, полученная в результате аппроксимации, дает $N_{sfo} = N_{sf}/kT \sim 4 \cdot 10^{15}$ эВ $^{-1} M^{-2}$.

Таким образом, обнаружен дополнительный механизм потерь тока короткого замыкания, заключающийся в увеличении тока инжекции за счет падения напряжения на p-n-переходе, индуцированного накоплением неравновесного поверхностного заряда, в структурах с субмикронным эмиттером. Для исследуемых ФЭП эти потери лежат в пределах от 9% до 19,7%.

Рисунок 3. Зависимость тока короткого замыкания от концентрации излучения X для исследуемого $\Phi \ni \Pi(1)$ и \ni талонного $\Phi \ni \Pi(2)$

СПИСОК ЛИТЕРАТУРЫ

- 1. Фаренбрух А., Бьюб Р. Солнечные элементы: Теория и эксперимент. М.: Энергоатомиздат. 1987. 280 с.
- 2. Богатов Н.М., Матвеякин М.П., Родоманов Р.Р., Яковенко Н.А. // Автометрия. 2003. Т. 39. № 6. С. 68.

ВОЗБУЖДЕНИЕ Ar I ПРИ ПАРНЫХ СТОЛКНОВЕНИЯХ АТОМОВ АРГОНА В ОСНОВНОМ СОСТОЯНИИ

Курсков С.Ю., Хахаев А.Д. Петрозаводский государственный университет, Петрозаводск

Данная работа посвящена изучению возбуждения Ar I при взаимодействии атомов аргона низких энергий в условиях однократных столкновений. В ней представлены результаты экспериментального исследования зависимости сечений возбуждения спектральных линий Ar I для переходов между $Ar(3p^54s)$ -и $Ar(3p^5np)$ -состояниями ($3 \le n \le 6$) от главного квантового числа при энергии соударения 450 эВ (с.ц.м.).

Измерения сечений возбуждения при взаимодействии пучка быстрых атомов с газовой мишенью вы-

полнены методами оптической спектроскопии с помощью автоматизированной установки на базе IBM-совместимого персонального компьютера и программно-управляемой системы КАМАК. Формирование пучка быстрых атомов осуществлялось путем симметричной резонансной перезарядки ионов на собственном газе в каналах вытягивающего электрода газоразрядного источника ионов. Давление газамишени в камере столкновений было равно $4.5\cdot10^{-1}$ Па, давление остаточного газа не превышало $3\cdot10^{-4}$ Па. Излучение возбужденных частиц регистрировалось под углом 90^{-0} к атомному пучку, поэтому возбужденные частицы пучка и мишени не различались. Поляризация излучения не учитывалась.

Впервые получены сечения возбуждения спектральных линий Ar I для $4s'[1/2]_1^0 - np'[1/2]_0$, $4s[3/2]_1^0 - np[1/2]_0$, $4s[3/2]_2^0 - np[5/2]_3$, $4s'[1/2]_0^0 - np'[3/2]_1$, $4s[3/2]_2^0 - np[5/2]_2$, $4s'[1/2]_0^0 - np'[1/2]_1$, $4s[3/2]_2^0 - np[3/2]_1$ и $4s[3/2]_2^0 - np[3/2]_2$ -переходов ($4\le n\le 6$) при указанной энергии столкновения. Эти данные позволили установить вид зависимости сечений возбуждения от главного квантового числа. Зави-