Медииина, биотехнология

АДАПТАЦИОННЫЕ МЕХАНИЗМЫ КРОВООБРАЩЕНИЯ ПРИ СОЧЕТАННОМ ВОЗДЕЙСТВИИ ХИМИЧЕСКИХ ФАКТОРОВ ПРОИЗВОДСТВЕННОЙ СРЕДЫ В ЭКСПЕРИМЕНТЕ

Абдалкин М.Е., Бабкин С.М., Карханин Н.П., Прохоренко И.О. Самарский государственный медицинский университет, Самарский военно-медицинский институт, Самара

В связи с автоматизацией и механизацией многих производственных процессов многие производства позволяют людям работать в условиях ограниченной физической активности и монотонности работы. У работающих, имеющих различный стаж работы на воздействие этих стандартных производственных условий, возникают различные реакции. В процессе выработки трудовых навыков вырабатывается динамический стереотип, позволяющий тратить небольшое количество энергии на выполнение одной и той же работы. Однако даже при хорошо организованном монотонном труде на человека действуют многие производственные физические и химические факторы, которые нарушают оптимальную работу систем жизнеобеспечения и, в частности, кровообращения.

Длительное воздействие неблагоприятных факторов в условиях современного производства может привести к срыву адаптационных механизмов организма, вызвать нарушение функции органов - и систем-мишеней, а затем и их заболевания. Актуальной задачей является изучение влияния различных физических и химических агентов на организм человека в условиях монотонного труда в автомобильной промышленности.

В наших исследованиях объектом исследования являлись 401 рабочий лакокрасочного цеха автомобильного завода. В условиях лакокрасочного цеха ведущими неблагоприятными факторами являлись ароматические углеводороды, вибрация и шум. Для доказательств некоторых регуляторных механизмов влияния токсических веществ, вибрации и шумовых факторов на организм человека, которые имеют место на данном производстве, проведены эксперименты на животных.

В искусственных экспериментальных условиях возможно выделение воздействия отдельных факто-

ров на функции сердца и сосудов. Настоящий фрагмент исследования посвящен изучению влияния ксилола, влияния и шума на органы - мишени сердечнососудистой системы животных.

Объект и материалы исследования. Эксперименты проводились на 90 беспородных крысах, которые были разделены на три группы по 30 животных. Первая группа в течение 4-х месяцев подвергалась ежедневному четырехчасовому сочетанному воздействию ксилола в концентрации 54,0 + 0,9 мг/м3, вибрации и шума. Вторая группа подвергалась только воздействию ксилола в той же концентрации. Третья группа служила контролем. Факторы вибрации и шума создавались при помощи вибростенда ЭВ-1М. Применялась вибрация с максимальным уровнем колебательной скорости (104 дБ) в полосе частот со среднегеометрическим значением 100 Гц и наименьшим уровнем вибрации (56 дБ) в октавной полосе со среднегеометрическим значением 2 Гц. Наивысший уровень сопутствующего шума (79 дБ) определялся в октавной полосе частот со среднегеометрическим значением 250 Гц, уровень звука составлял 75 дБ.

Исследования проводились в течение 4 месяцев. Животных декапитировали через через две недели, четвертого месяца и после восстановительного периода и проводили морфологические и биохимические исследования сердечной мышцы. В конце исследования животных декапитировали и проводили морфологические и биохимические исследования сердечной мышцы.

Методики исследования. У животных измеряли систолическое артериальное давление в хвостовой артерии, электрокардиограмму во 2 отведении. В сыворотке крови определяли содержание беталипопротеидов, фосфолипидов и триацилглицеринов (1,2,3). После окончания эксперимента и декапитации животных в миокарде определяли содержание оксипролина, гексозаминов и гексуроновых кислот (4). Полученные результаты обрабатывались статистически с использованием критерия Стьюдента.

Результаты исследования и их обсуждение. У животных первой группы уже через один месяц отмечено увеличение уровня артериального давления, которое не снижалось даже в восстановительном периоде (таблица 1). Во второй группе экспериментов отмечалось повышение артериального давления только через 4 месяца воздействия ксилола.

Таблица 1. Систолическое артериальное давление у белых крыс (мм рт.ст.)

таблица т. Систоли теское артериальное давление у белых крые (мм рт.ст.)										
Группа	Стат.	2 недели воздействия	1 месяц	2 месяца	3 меся- ца	4 меся- ца	Восстано-			
	пока-						вительный			
	затели						период			
1	M+m	105,5 ±1,7	124,3±	102,5±1,9	$125,5\pm$	$122,2\pm$	110,7± 1,6			
			1,72*		1,3*	1,3*				
2	M+m	102,4± 2,0	101,5± 1,7	107,5± 2,8	106,3±	114,1±	102,2± 1,9			
					2,9	1,4				
3	M+m	1066 16	100.0 + 1.5	103,8± 2,3	$101,3\pm$	101,5±	$101,2\pm 2,1$			
3	IVI+III	106,6± 1,6	$100,0\pm 1,5$	103,0± 2,3	3,3	+ 1,6	$101,2\pm2,1$			
*достоверность										

Электрокардиографические исследования показали изменение электрической активности сердца крыс во время эксперимента. Так, интервал QS на второй неделе эксперимента достоверно уменьшался как в первой $(0,0323\pm0,0018~{\rm c})$, так и во второй группе $(0,0310+0,002~{\rm c})$ по сравнению с контролем $(0,0375+0,001~{\rm c})$. Электрическая систола QT достоверно уменьшалась на 4-м месяце эксперимента в второй группе до $0,053\pm0,0017~{\rm c}$ по сравнению с контрольной величиной $0,067+0,001~{\rm c}$ (P<0,05). Наблюдалось достоверное снижение амплитуды зубца R в 1-й группе животных на 4-м месяце сочетанного и комплексного воздействия физических и химических факторов до $0,2518\pm0,04~{\rm mB}$ по сравнению с контрольными цифрами $0,5+0,05~{\rm mB}$.

Систолический показатель снижался в 1-й группе на 2-м месяце (до 47,3+1,9% по сравнению с контро-

лем 52,6 + 1,1%, P<0,05) и 4-м месяце (44,85±1,2% при 59,1±1,3% в контроле, P<0,05) эксперимента.

Изменения электрической активности сердца выражающиеся, главным образом, в нарушении проведения возбуждения в желудочках, косвенно свидетельствуют о нарушении сократительной способности миокарда. Однако эти изменения носили кратковременный характер, что говорит об обратимости процессов в миокарде и хороших компенсаторных возможностях организма животного в восстановительном периоде эксперимента.

Биохимические исследования соединительной ткани миокарда показали, что содержание оксипролина как составной части соединительно-тканных фибриллярных белков увеличивалось в первой группе на всех сроках эксперимента, а во второй группе только к 4-му месяцу эксперимента (табл.2).

Таблица 2. Биохимический состав миокарда животных (обозначение групп те же, что и в 1-й табл.).

Сроки наблюдения	Группы	Оксипролин	Гексозамин	Гексуроновая к-	Гексозамин/
	животных	мг/г	мг/г	та мг/г	Оксипролин
2 недели	I	5,03±0,13*	6,50±0,34	16,17±0,39	1,29±0,06
	II	$4,80\pm0,15$	6,53±0,26	$15,88\pm0,45$	$1,44\pm0,09$
	III	$4,48\pm0,14$	6,78±0,21	15,45±0,72	1,53±0,07
4 месяца	I	7,06±0,11*	5,58±0,27	17,14±1,39	0,79±0,04*
	II	5,51±0,19*	5,44±0,20	17,32±1,86	$0,99\pm0,05$
	III	4,87±0,09	5,82±0,40	15,31±1,67	$1,19\pm0,07$
Восстановительный	I	6,17±0,15*	7,11±0,21	19,27±1,57	1,16±0,06*
период	II	$4,64\pm0,13$	$7,29\pm0,52$	20,48±1,36	$1,59\pm0,14$
	III	$4,44\pm0,17$	$7,29\pm0,32$	21,85±1,13	$1,66\pm0,09$

^{*-}Достоверность различий по отношению к контролю.

Количество гексозаминов, характеризующее содержание неколлагеновых белков, и гексуроновых кислот, характеризующих суммарное содержание гликозоаминогликанов, в миокарде животных в опытных и контрольной группах не отличались друг от друга. Соотношение гексозамин/оксипролин как показатель «биохимического возраста» соединительной ткани уменьшалось в первой группе во всех сроках эксперимента, а во второй группе лишь на 4-м месяце эксперимента. Наблюдаемые изменения состояния соединительной ткани миокарда свидетельствуют об увеличении удельного веса коллагеновых белков, то есть о стимулировании продукции соединительной ткани в сердечной мышце.

Учитывая существующую связь изменений биохимического состава ткани аорты с нарушениями липидного обмена при атеросклеротических перестройках, особое внимание обращалось на изменение липидного обмена, сохраняющееся и в восстановительном периоде эксперимента.

Так, в первой группе эксперимента наблюдалось увеличение количества беталипопротеидов до 0,935 \pm 0,085 г/л при 0,520 \pm 0,058 г/л в контроле (P<0,01), фосфолипидов до 2,068 \pm 0,075 ммоль/л при 0,999 \pm 0,076 ммоль/л в контроле (P<0,01) и триацилглицеринов до 0,723 \pm 0,083 ммоль/л при 0,435 \pm 0,077 ммоль/л в контроле (P<0,05).

Таким образом, экспериментальные исследования показали, что ароматические углеводороды, особенно в сочетании и другими физическими факторами, такими как вибрации и шум, вызывают функцио-

нальные изменения сократительной и электрической активности сердечной мышцы у животных, а также органические изменения в виде стимуляции роста соединительной ткани. Такие изменения, наблюдающие в более выраженной степени в поздних сроках эксперимента, следует считать неблагоприятными.

СПИСОК ЛИТЕРАТЫРЫ

- 1. Колб В.Г., Камышников В.С. Справочник по клинической химии. -2-е изд. Минск: Беларусь, 1982.-366 с.
- 2. Леднина М. определение беталипопротеидов в сыворотке крови турбодинамическим методом.//лаб.дело. 1960.-№3.-С.13-17.
- 3. Предтеченский В.Б. Руководство по клиническим лабораторным исследованиям: М.: Медгиз, 1960.-375 с.
- 4. Слуцкий Л.И. Биохимия нормальной и патологически измененной соединительной ткани.- М.: Медицина, 1969.-375 с.