гослойного оксидно-ванадиевого резиста. В противном случае любая неоднородность травления приводит к созданию рельефа на поверхности Si.

Травление в плазме Cl показало, что в этом случае металл травится с высокой скоростью, тогда как оксид практически не удаляется при такой обработке. Травление оксида с высокой селективностью и удовлетворительной скоростью удалось реализовать при высокой температуре процесса (150-300°C). При этом после удаления оксида наблюдалось быстрое травление V, тогда как кремний в плазме Cl не травился. Этот процесс позволил проявить линии резиста толщиной < 100 нм с экспозиционными дозами ~ 20 – 50 мКл/см².

Заметим, что наличие толстого слоя высшего оксида негативно сказывалось на процессе проявления. Параметры процесса (скорость травления и селективность) улучшались, если этот слой предварительно удалялся влажным химическим травлением. Кроме того, положительное влияние оказывал послеэкспозиционный отжиг в инертной или восстановительной атмосфере.

Также как и в случае физического травления результат сильно зависел от от условий осаждения металла, окисления и хранения образцов как до, так и после экспонирования.

Электронно-микроскопический рисунок линии резиста приведен на рис. 2.

Рисунок 2. Линия оксидно-ванадиевого резиста на Si. Доза 175 мКл/см² (черно-белый маркер 100 нм).

Принципиально важным является то, что скорости травления всех частей оксидно-ванадиевого резиста были существенно ниже, чем для Si или SiO₂, что позволяет проводить сухое травление полупроводниковых подложек через резистивную маску.

4. Заключение

Полученные результаты показывают, что плазмохимическое травление может успешно использоваться для сухого проявления оксидно-ванадиевого резиста. Получены линии резиста с разрешением меньше 100 нм, экспозиционными дозами ~ 20 мКл/см² и высотой рисунка 100 – 200 нм, что вполне достаточно для эффективного сухого травления Si или SiO₂.

Основное препятствие на пути разработки эффективного процесса заключается в том, что сульфиды, хлориды, гидраты и фториды ванадия, образующиеся при обработке в плазме традиционных для микроэлектроники газов, имеют высокие температуры плавления и кипения. Это может потребовать высоких (до 300° С) температур процесса. Этого можно избежать, проводя одновременно физическое и химическое травление в смеси газов (например, Cl и (или) CF₄ c Ar).

Работа выполнена при поддержке гранта Министерства Образования РФ и Американского Фонда Гражданских Исследований и Развития (CRDF) № РZ-013-02.

Литература

1. M. A. Lieberman and A. J. Lichtenberg, *Principles of Plasma Discharges and Materials Processing*, John Wiley & Sons, Inc., New York, 1994.

2. F. A. Chudnovskii, A. L. Pergament, D. A. Schaefer, G. B. Stefanovich, *Proc. SPIE*, v. 2777, p.80 (1996).

3. A. L. Pergament, G. B. Stefanovich, E. L. Kazakova D.G. Stefanovich, A.A. Velichko, Solid State Phenom., v. 90-91, p. 97-103 (2003).

4. F. A. Chudnovskii, G. B. Stefanovich. *J. Solid State Chem.*, v.98, p.137 (1992).

5. A. L. Pergament, G. B. Stefanovich, *Thin Solid Films*, v.322, n.1-2, p.33 (1998).

РАЦИОНАЛЬНЫЕ ТЕХНОЛОГИИ В ЛОКАЛЬНОЙ СПЕКТРОСКОПИИ НЕОДНОРОДНОЙ ПЛАЗМЫ

Екимов К.А., Луизова Л.А., Соловьев А.В., А.Д. Хахаев А.Д.

Петрозаводский Государственный Университет, Петрозаводск

Определение локальных значений параметров плазмы: концентрации электронов, атомов в основном и возбужденных состояниях, атомной и электронной температуры в некоторых случаях возможно, если определены интенсивности и формы контуров спектральных линий, излучаемых различными элементарными объемами плазмы [1], что и является задачей локальной спектроскопии.

В решении этой задачи можно выделить следующие основные этапы:

-сбор массивов экспериментальных данных, связанных с пространственным распределением спектральной энергетической яркости поверхности источника.

-определение на основе этих данных пространственного распределения спектральной энергетической яркости поверхности источника с учетом кривой спектральной чувствительности использованных фотоприемников и возможных искажений полученных распределений из-за конечного разрешения спектральной аппаратуры.

- переход от массива яркости поверхности источника к массиву локальных значений коэффициентов излучения ε (λ , \mathbf{r}) (λ - длина волны, \mathbf{r} -пространственная координата) на основе принятой модели источника. В данной работе предполагается осевая симметрия источника, тогда такой переход (радиальное преобразование) состоит в решении интегрального уравнения Абеля.

Принципы и разнообразные технические и программные средства для реализации этих этапов известны давно: сбор данных осуществляется автоматизированной системой (как правило, уникальной) под управлением ЭВМ, для обработки данных с целью радиальных преобразований и исключения аппаратных искажений применяются различные методы статистической регуляризации [2] (с использованием не всегда обоснованной априорной информации об искомых распределениях).

Отличительная черта предлагаемой технологии состоит в применении программно аппаратного комплекса, построенного по модульному принципу на основе стандартных, промышленно выпускаемых технических и программных средств и обработки данных с помощью алгоритмов, обеспечивающих устойчивость результата к шумам эксперимента на основе внутренней корреляции обрабатываемых массивов.

Измерительный комплекс использует дифракционный спектрометр ДФС-12 с фотоэлектрической регистрацией спектра и систему пространственного стробирования [3] В качестве приборных интерфейсов используются модули КАМАК или платы LabPC-1200AI, PCI-1802L, PCI-1202L, а также сетевой интерфейс (для удаленного управления экспериментальным оборудованием). Все программное обеспечение для управления процессом сбора данных и их обработки разработано в среде графического программирования LabView [4]. Комплекс работает под управлением IBM-совместимого компьютера с ОС Windows-98, однако легко может быть адаптирован к любой операционной системе , поддерживающей LabView.

Программное обеспечение включает следующие основные функциональные модули:

а) градуировки спектрального прибора по длинам волн путем регистрации известного спектра,

б) градуировки чувствительности фотоприемной системы путем регистрации спектра аттестованной температурной лампы.

в) автоматизированного пространственно- спектрального стробирования в заданных спектральном и пространственном интервалах и в заданных фазах периода тока (для источников, работающих на переменном токе). г) загрузки ранее зарегистрированных данных для последующего анализа,

Каждый модуль оформлен в виде "виртуального прибора", на панели которого имеются окна для ввода необходимой информации, отражается результат работы модуля и имеются кнопки управления (запуск модуля, сохранение результата).

Модуль "г" позволяет автоматически перевести отсчеты регистрирующей системы в абсолютные значения яркости поверхности источника, извлечь различную информацию из спектра (например, измерить положение максимумов и ширины линий) непосредственно используя средства Labview для работы с графиками и выполнить обработку данных с использованием описанного ниже алгоритма.

Результаты работы любого модуля автоматически протоколируются в информационом файле, в который автоматически вводится дата эксперимента, вся информация об условиях измерений, которая была на панелях виртуальных приборов, а также вспомогательная информация, которую пользователь может ввести (например, тип источника, ток разряда).

При работе модуля "в" система осуществляет сканирование по пространственной координате x - расстоянию от оси источника и для определенных положений x_k (k=1,2...m) регистрирует распределение отсчетов фотоприемного устройства F_{ik} (относящиеся к определенной фазе тока), соответствующих различным длинам волн (λ_i) (i=1,2... n)

$$F_{i,k} = q \int b(\lambda, x_k) g(\lambda - \lambda_i) d\lambda$$
 (1)

Здесь $b(\lambda, x_k)$ - спектральная энергетическая яркость поверхности источника на расстоянии от оси x_k , g - аппаратная функция спектрального прибора, q - коэффициент, зависящий от чувствительности фотоприемника, практически постоянен в пределах контура одной спектральной линии, поэтому в дальнейшем описании алгоритма опускается. Для получения искомых значений коэффициентов излучения ε (λ , r) в определенном сечении источника (теперь г- расстояние от его оси) надо исключить аппаратные искажения из каждого профиля F_{ik} при фиксированном k (m раз решить уравнение 1), с учетом значения q определить $b(\lambda, x_k)$ и найти ε (λ , r), решив интегральное уравнение Абеля для каждой спектральной компоненты (n раз)

$$\boldsymbol{\varepsilon}_{\lambda}(\mathbf{r}) = -\frac{1}{\pi} \int_{\mathbf{r}}^{\mathbf{h}} \frac{d\boldsymbol{b}_{\lambda}(\mathbf{x})}{d\mathbf{x}} \frac{d\mathbf{x}}{\sqrt{(\mathbf{x}^2 - \mathbf{r}^2)}} = \boldsymbol{R} \{\mathbf{b}_{\lambda}\}$$
(2)

Вместо этого проводится "коллективная" обработка исходного массива F_{ik} , основанная на использовании метода главных компонент [5], при которой существенно сокращается число операций, и главное, каждая операция совершается над распределением, полученным путем усреднения значительного числа отсчетов, что повышает устойчивость результата к шумам.

Сначала находится средний вектор отсчетов, в зависимости от пространственной координаты (его компоненты усреднены по всем длинам волн):

$$\overline{F_k} = \frac{1}{n} \sum_{i=1}^{n} F_{i,k}$$
(3)

Затем вычисляется ковариационная матрица массива отсчетов:

$$A_{k,l} = \frac{1}{n} \sum_{i=1}^{n} (F_{i,k} - \overline{F}_{k}) (F_{i,l} - \overline{F}_{l})$$
(4)

Массив F_{ik} раскладывается по собственным векторам матрицы A, причем учитываются только вектора U_p , отвечающие собственным значениям матрицы A, превосходящим величину оценки дисперсии воспроизводимости одного отсчета F (оценивается при повторных измерениях одного и того же массива). Вследствие сильной корреляции отсчетов внутри массива число таких векторов v всегда существенно меньше m.

Вычисляются проекции спектрального распределения на вектор с номером p- M_{i,p}:

$$M_{i,p} = \sum_{k=1}^{m} (F_{i,k} - \overline{F}_{k}) U_{p,k}$$
(5)

только они зависят от длин волн и из них, в случае необходимости, надо исключать аппаратные искажения (v операций), результат такого исключения обозначим $L_{i,p}$.

 F_k и U_p зависят только от координаты x и над ними осуществляются радиальные преобразования (2) (всего v+1 раз)

В результате искомые контура в различных точках плазмы получаются согласно соотношению:

$$\varepsilon (\lambda, \mathbf{r}) = \mathbf{R} \{ \overline{\mathbf{F}} \} + \sum_{p=1}^{v} L_{p}(\lambda) \mathbf{R} \{ \mathbf{U}_{p} \}$$
(6)

Комплекс применен для исследования конкретных плазменных объектов. В металлогалоидной лампе (закрытая дуга в парах ртути высокого давления с добавкой иодида таллия, питаемая переменным током) зарегистрированы поперечные профили яркости 12 спектральных линий таллия и ртути в двух фазах тока (соответствующих максимальной и минимальной яркости линий) в m=10 пространственных точках. Число спектральных точек п в каждой линии в зависимости от ее ширины составляло от 85 до 280. Описанный алгоритм обработки применен к линиям, которые по оценкам не испытывали заметного поглощения внутри источника. Ни в одном случае число значимых собственных векторов не превысило v=2. Таким образом, обработка свелась к двум решениям уравнения (1) вместо 10 и трем радиальным преобразованиям (вместо более чем 80) Эффективность коллективной обработки иллюстрируется на рисунке 1.

Рисунок 1. Нормированные на максимум контура линии 434.7нм (наиболее слабой и, соответственно, зашумленной из линий ртути) для центра разряда, полученные при "коллективной" (1) и "индивидуальной" (2) обработке исходного массива в двух фазах тока:

а) максимальная, b) минимальная интенсивность излучения.

По построенным в результате обработки исходных массивов отсчетов определены контурам ε (λ , r) найдены радиальные распределения концентрации атомов ртути в основном и возбужденном состояниях, возбужденных атомов таллия и концентрации электронов. При этом обнаружен ряд ранее неизвестных эффектов (например, немонотонный ход определенных по штарковскому уширению линий [1] электронных концентраций), исследование которых с использованием описанной технологии продолжается.

Работа выполнена при поддержке гранта PZ-013-02 CRDF, Мин.обр. РФ и Правительства Карелии.

Литература

1. Энциклопедия низкотемпературной плазмы / Под. ред В.Е.Фортова. Вводный том II, М: Наука, 2000, 655с.

2. Тихонов А. И., Арсенин В. Я. Методы решения некорректных задач. М.: Наука.- 1979. - 285 с.

3. А.с. № 545954; СССР, Оптико-механическое линейносканирующее устройство:/ Кюльмясу И.И., Хахаев А.Д. Щербина А.И. (СССР) ; Заяв.20.11.76; Опубл. 05.02.1977, Бюл.№5

4. Жарков Ф.П., Каратаев В.В., Никифоров В.Ф., Панов В.С. Использование виртуальных инструментов LabView.-М: Радио и связь, 1999, 268 с. (см. также http://www.labview.ru/)

5. J. Edward Jackson. A User's Guide To Principal Component. 1991. John Willey &Sons , New York , 567 pp.