Полихинозалоны с повышенной термо- и огнестойкостью на основе диаминопроизводных хлорала и ДДТ

Кумыков Р.М., Иттиев А.Б., Русанов А.Л. Кабардино-Балкарская государственная сельскохозяйственная академия

Перечень направлений имеющихся в литературе по использованию хлораля и ДДТ для получения новых полимеров и материалов на их основе свидетельствуют об исключительно интересных возможностях развития этой области.

Серьезным стимулом для интенсификации работ в рассматриваемом направлении является возможность получения на основе доступного и недорогого сырья полихинозалонов с повышенной термо- и огне-

стойкостью в сочетании с улучшенной растворимостью и перерабатываемостью полимеров.

Синтез полихинозалонов на основе диаминопроизводных ДДТ и дибензоксозинонов осуществлялся методом высокотемпературной каталитической полициклоконденсации в М-крезоле с использованием бензойной кислоты в качестве катализатора ($t \approx 200^{\circ}$ C).

Все реакции синтеза полихинозалонов, протекали в гомогенных условиях и приводили к получению целевых полихинозалонов с выходами, близкими к количественному.

Некоторые характеристики синтезированных полихинозалонов, содержащих 1,1-дихлорэтиленовые, кетонные и метиленовые «мостиковые» группы приведены в табл. 1.

Таблица 1. Некоторые характеристики полихинозалонов на основе диаминопроизводных ДДТ и дибензоксазинонов общей формулы:

X	η* _{пр.} , дл/г	Т** разм., С°	T***, 10% C°	КИ****	Растворимость****				
					H ₂ SO ₄	М- крезол	ТХЭ фенол (3:1)	ТХЭ	ДМСО
=CCl ₂	0,72	263-275	490	52	+	+	+	+/-	+
=O	0,78	292-300	510	21	+	+	+	+/-	+
$=H_2$	0,55	300-310	520	28	+	+	+	+/-	+

^{*} Приведенные вязкости 0,5%-ных растворов полимеров в H₂SO₄ при 25°C.

Температуры размягчения полимеров, согласно данным термомеханического анализа (табл. 1), составляют 275-310°С, а температуры начала разложения (10% потери массы, согласно данным ТГА) (табл. 1), составляют 490-510°С. По термостойкости эти полимеры превосходят известные полихонозалоны на 5-10°С.

Полимерам содержащим 1,1-дихлорэтиленовые группы характерна высокая огнестойкость (КИ = 52), обусловленная высоким содержанием хлора в этих полимерах.

Работа представлена на научную заочную электронную конференцию «Приоритетные направления развития науки технологий и техники» (15-20 марта 2004г)

Новые полинафтилимиды на основе тетраядерных феноксиаминов и ароилен-бис (нафталиевых ангидридов)

Кумыков Р.М., Русанов А.Л. Кабардино-Балкарская государственная сельскохозяйственная академия

Полинафтилимиды (ПНИ) с улучшенной растворимостью в органических растворителях получаются путем использования четырехъядерных феноксиаминов с диангидридами содержащими кетоариленовые и оксикетоариленовые фрагменты высокотемпературной каталитической полицикло-конденсацией.

Это обстоятельство предопределило наш интерес к синтезу и исследованию свойств полинафтилимидов

^{**} Температуры размягчения полимеров по данным термомеханического анализа.

^{***} Температуры потери 10% массы по данным динамического термогравиметрического анализа на воздухе, $\Delta T = 5$ °C/мин.

^{****} Кислородные индексы (КИ) по данным горения образцов в азотно-кислородной смеси.

^{***** +} растворяется; — не растворяется; +/- частично растворяется.